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Motivation

• model natural/physical processes ⇒ “real” coin flip

• primality tests ⇒ cryptography
• machine learning
• improvement of algorithms, e.g., quicksort
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Motivation - Quicksort
• “standard” vs. randomized quicksort

• first vs. last vs. random vs. median pivot element
• worst case: O(n2) vs. O(n2) (BUT expected or average time complexity is O(n log n))

Example Quicksort

[10, 80, 30, 90, 40, 50, 70]

[80, 90]

[][80]

[10, 30, 40, 50]

[][10, 30, 40]

[][10, 30]

[][10]
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Overview

• Guarded Command Language (GCL)

• Probabilistic Guarded Command Language (pGCL)

• Abstraction and Refinement

• Probably Hoare? Hoare Probably!

• Abstraction Refinement and Proof for Probabilistic Systems
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Guarded Command Language (GCL)

• simple (⇒ simplicity in reasoning helps)
• “statement list prefixed by a boolean expression”

• alternative construct & repetitive construct
• used for weakest-pre-condition semantics

Syntax of GCL

〈guarded command〉 ::= 〈guard〉 → 〈guarded list〉
〈guard〉 ::= 〈boolean expression〉

〈guarded list〉 ::= 〈statement〉{;〈statement〉}

〈guarded command set〉 ::= 〈guarded command〉{�〈guarded command〉}
〈alternative construct〉 ::= if〈guarded command set〉fi
〈repetitive construct〉 ::= do〈guarded command set〉od

〈statement〉 ::= 〈alternative construct〉 | 〈repetitive construct〉 | “other statements”
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Alternative Construct

if x ≥ y → m := x

� y ≥ x→ m := y

fi

Repetitive Construct

k := 0; j := 1;
do j 6= n→ if f(j) ≤ f(k)→ j := j + 1

� f(j) ≥ f(k)→ k := j; j := j + 1
fi

od
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Primer: Nondeterminism vs. Determinism

“the simplicity and elegance of the above would have been destroyed by requiring the
derivation of deterministic programs only” – E.W.Dijkstra in [1]

Nondeterminism Example NE

if x ≥ y → m := x

� y ≥ x→ m := y

fi

Determinism Example DE

if x > y → m := x

� y < x→ m := y

� y = x→ m := y

fi
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Primer cont’d

“Assertions about programs” are predicates that are supposed to be “true at this point of the
program”.

Formalized — into logic — it looks as:

{pre} prog {post} Hoare-style
or preV wp.prog.post Dijkstra-style

Example

{x = y} NE {m = y}
or (x = y)V wp.NE.(m = y) later V . . . ”is no more than”

• reasoning about weakest pre-conditions of programs ⇒ weakest pre-condition semantics
• Hoare logic = formal system (set of logical rules) for reasoning about the correctness of

programs
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How to Use GCL in a Probabilistic Setting?

• deterministic vs. nondeterministic vs. probabilistic choice
• ’demonic’ choice in GCL by Dijkstra (first overlapping guards)

Demonic Choice

• first not fundamental ⇒ abandoned

• replaced by probabilistic choice
• probabilistic semantics divorced
• deterministic refines probabilistic choice, which refines demonic choice

Demonic Choice Operator

this u that

Basically means, that it does not matter if we choose this or that.

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 11/49
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Probabilistic Guarded Command Language (pGCL)

⇒ extension of GCL to incorporate probabilities & demonic choice

⇒ acts over expectations rather than predicates; an expectation is real
special case: [P ] is probability that predicate P holds, so if false, then [P ] = 0, if true
[P ] = 1

(Part of the) Syntax of pGCL

〈prog〉 := abort | skip | x := E | 〈prog〉; 〈prog〉

〈prog〉 p⊕ 〈prog〉 | 〈prog〉 u 〈prog〉 |
(mu xxx · C)

Probabilistic Choice Operator: Coin Flip

Tail 1
2
⊕ Head . . . fair coin

no perfect coins in nature:
Tail 0.49⊕ Head u Tail 0.51⊕ Head . . . nearly fair coin
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〈prog〉 p⊕ 〈prog〉 | 〈prog〉 u 〈prog〉 |
(mu xxx · C)

Probabilistic Choice Operator: Coin Flip

Tail 1
2
⊕ Head . . . fair coin

no perfect coins in nature:
Tail 0.49⊕ Head u Tail 0.51⊕ Head . . . nearly fair coin
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pGCL cont’d

There exist more constructs such as:
• Boolean embedding of predicate pred as expectation:

[pred] := “if pred then 1 else 0”

• Conditional:

if pred then prog else prog’ fi := prog [pred]⊕ prog’

• Multi-way probabilistic choices
• Variations on p⊕
• Demonic choice in variable assignments
• Iteration

do pred→ body od := (mu xxx · (body; xxx) if pred else skip)
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• Implication-like relations for expectations exp, exp’:

expV exp’ means exp is everywhere less than or equal to exp’
exp ≡ exp’ means exp and exp’ are everywhere equal
expW exp’ means exp is everywhere greater than or equal to exp’
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wp-Semantics of pGCL

wp.abort.postE := 0
wp.skip.postE := postE

wp.(x := expr).postE := postE〈x 7→ expr〉
wp.(prog; prog’).postE := wp.prog.(wp.prog’.postE)

wp.(prog u prog’).postE := wp.prog.postE min wp.prog’.postE
wp.(prog p⊕ prog’).postE := p ∗ wp.prog.postE + (1− p) ∗ wp.prog’.postE
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Overview

• Guarded Command Language (GCL)

• Probabilistic Guarded Command Language (pGCL)

• Abstraction and Refinement

• Probably Hoare? Hoare Probably!

• Abstraction Refinement and Proof for Probabilistic Systems
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What is Abstraction?

Abstraction is the process of extracting the underlying structures, patterns or properties of a
mathematical concept or object, and generalizing it so that it has wider applications or
matching among other abstract descriptions of equivalent phenomena. — Wikipedia

What is Refinement? (Specialization)

Refinement is the process of refining the underlying structures, patterns or properties of
mathematical concepts or objects to a more specialized version.

Consider the input set I for functions/programs f , g, then g is a refinement of f if

{g(i) | i ∈ I} ⊂∗ {f(i) | i ∈ I}

*: N.B.: This is not true for all types of abstraction or how abstraction is used.

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 17/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/


What is Abstraction?

Abstraction is the process of extracting the underlying structures, patterns or properties of a
mathematical concept or object, and generalizing it so that it has wider applications or
matching among other abstract descriptions of equivalent phenomena. — Wikipedia

What is Refinement? (Specialization)

Refinement is the process of refining the underlying structures, patterns or properties of
mathematical concepts or objects to a more specialized version.

Consider the input set I for functions/programs f , g, then g is a refinement of f if

{g(i) | i ∈ I} ⊂∗ {f(i) | i ∈ I}

*: N.B.: This is not true for all types of abstraction or how abstraction is used.

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 17/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/


Example

x := −y 1
3
⊕ x := +y

We want to calculate:

wp.(x := −y 1
3
⊕ x := +y).[x ≥ 0]

Which means, “what is the probability that the predicate ’the final state, will satisfy x ≥ 0’
holds in some given initial state of the program?”

wp.(x := −y 1
3
⊕ x := +y).[x ≥ 0]

≡ 1
3 ∗ wp.(x := −y).[x ≥ 0] + 2

3 ∗ wp.(x := +y).[x ≥ 0]

≡ 1
3 ∗ [−y ≥ 0] + 2

3 ∗ [+y ≥ 0]

≡ [y < 0]
3 + [y = 0] + 2[+y ≥ 0]

3
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Example cont’d

[y < 0]
3 + [y = 0] + 2[+y ≥ 0]

3

This is our calculated pre-expectation.

The probabilities can be read off from it:
when y < 0 1

3 + 0 + 2 ∗ 0
3 = 1

3
when y = 0 0

3 + 1 + 2 ∗ 0
3 = 1

when y > 0 0
3 + 0 + 2 ∗ 1

3 = 2
3

How can we build a more abstract program of this Example?

x := −y 1
3
⊕ x := +y
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Example Abstraction

• x := −y is to be executed with probability at least 1
3

• x := +y is to be executed with probability at least 1
4

• it is certain that one or the other will be executed

What else can we say from this specification?

x := −y 1
3
⊕ x := +y u x := −y 3

4
⊕ x := +y

We can also specify that a program part is executed given some range of probability.
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Example Abstraction cont’d

(x := −y 1
3
⊕ x := +y) u (x := −y 3

4
⊕ x := +y)

Using again the wp-semantics, we compute the following

wp.((x := −y 1
3
⊕ x := +y) u (x := −y 3

4
⊕ x := +y)).[x ≥ 0]

≡ wp.(x := −y 1
3
⊕ x := +y).[x ≥ 0] min wp.(x := −y 3

4
⊕ x := +y).[x ≥ 0]

≡ [y ≤ 0]
3 + 2 ∗ [y ≥ 0]

3 min 3 ∗ [y ≤ 0]
4 + [y ≥ 0]

4

≡ [y < 0]
3 + [y = 0] + [y > 0]

4

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 21/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/


Example Abstraction cont’d

(x := −y 1
3
⊕ x := +y) u (x := −y 3

4
⊕ x := +y)

Using again the wp-semantics, we compute the following

wp.((x := −y 1
3
⊕ x := +y) u (x := −y 3

4
⊕ x := +y)).[x ≥ 0]

≡ wp.(x := −y 1
3
⊕ x := +y).[x ≥ 0] min wp.(x := −y 3

4
⊕ x := +y).[x ≥ 0]

≡ [y ≤ 0]
3 + 2 ∗ [y ≥ 0]

3 min 3 ∗ [y ≤ 0]
4 + [y ≥ 0]

4

≡ [y < 0]
3 + [y = 0] + [y > 0]

4

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 21/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/


Example Abstraction cont’d

(x := −y 1
3
⊕ x := +y) u (x := −y 3

4
⊕ x := +y)

Using again the wp-semantics, we compute the following

wp.((x := −y 1
3
⊕ x := +y) u (x := −y 3

4
⊕ x := +y)).[x ≥ 0]

≡ wp.(x := −y 1
3
⊕ x := +y).[x ≥ 0] min wp.(x := −y 3

4
⊕ x := +y).[x ≥ 0]

≡ [y ≤ 0]
3 + 2 ∗ [y ≥ 0]

3 min 3 ∗ [y ≤ 0]
4 + [y ≥ 0]

4

≡ [y < 0]
3 + [y = 0] + [y > 0]

4

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 21/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/


Example Abstraction cont’d

(x := −y 1
3
⊕ x := +y) u (x := −y 3

4
⊕ x := +y)

Using again the wp-semantics, we compute the following

wp.((x := −y 1
3
⊕ x := +y) u (x := −y 3

4
⊕ x := +y)).[x ≥ 0]

≡ wp.(x := −y 1
3
⊕ x := +y).[x ≥ 0] min wp.(x := −y 3

4
⊕ x := +y).[x ≥ 0]

≡ [y ≤ 0]
3 + 2 ∗ [y ≥ 0]

3 min 3 ∗ [y ≤ 0]
4 + [y ≥ 0]

4

≡ [y < 0]
3 + [y = 0] + [y > 0]

4

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 21/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/


Example Abstraction cont’d

(x := −y 1
3
⊕ x := +y) u (x := −y 3

4
⊕ x := +y)

Using again the wp-semantics, we compute the following

wp.((x := −y 1
3
⊕ x := +y) u (x := −y 3

4
⊕ x := +y)).[x ≥ 0]

≡ wp.(x := −y 1
3
⊕ x := +y).[x ≥ 0] min wp.(x := −y 3

4
⊕ x := +y).[x ≥ 0]

≡ [y ≤ 0]
3 + 2 ∗ [y ≥ 0]

3 min 3 ∗ [y ≤ 0]
4 + [y ≥ 0]

4

≡ [y < 0]
3 + [y = 0] + [y > 0]

4

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 21/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/


Example Refinement

Refinement is the converse of abstraction:

S v T := wp.S.RV wp.T.R for all R

Consider the program of before:

(x := −y 1
3
⊕ x := +y) u (x := −y 3

4
⊕ x := +y)

This programs is a refinement according to the specification:

x := −y 1
2
⊕ x := +y
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Example Refinement cont’d

Prove the following refinement relation:

(x := −y 1
3
⊕ x := +y) u (x := −y 3

4
⊕ x := +y)

Vx := −y 1
2
⊕ x := +y

Semantic Level

wp.(x := −y 1
2
⊕ x := +y).P

≡wp.(x := −y).P
2 + wp.(x := +y).P

2

≡P−

2 + P +

2

≡3
5 ∗ (P−

3 + 2 ∗ P +

3 ) + 2
5 ∗ (3 ∗ P−

4 + P +

4 )
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P−

3 + 2 ∗ P +

3 min 3 ∗ P−

4 + P +

4 because 3
5 ∗

1
3 + 2

5 ∗
3
4 = 1

2
and 3
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2
3 + 2

5 ∗
1
4 = 1

2
≡ wp.(x := −y 1

3
⊕ x := +y u x := −y 3
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Program Level

x := −y 1
2
⊕ x := +y

= (x := −y 1
3
⊕ x := +y) 3

5
⊕ (x := −y 3

4
⊕ x := +y)

w (x := −y 1
3
⊕ x := +y) u (x := −y 3

4
⊕ x := +y)

N.B.: Demonic choice can be refined by any probabilistic choice.
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Interpretation of pGCL Expectations

• in full generality, an expectation is a function describing the value of a program state

• where [pred] is a special case assigning 0 or 1 as value
• more general expectations: estimate the value of final state in the initial state

⇒ summation over final states
⇒ the value of the final state multiplied by the probability the program “will go there”
from the initial state

• naturally “will go there” depends on “from where”
Analyses of programs S lead to conclusions like

p ≡ wp.S.[P ]

for some p and [P ]. We can interpret them in two equivalent ways:
1. the expected value [P ] of the final state is at least the value of p in the initial state; or

2. the probability that S will establish P is at least p.
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Example

The probability that two fair coins, when flipped, show the same faces:

wp.

(
x := H 1

2
⊕ x := T ;

y := H 1
2
⊕ y := T

)
.[x = y]

≡ wp.(x := H 1
2
⊕ x := T ).

( [x = H]
2 + [x = T ]

2

)
≡ 1

2

( [H = H]
2 + [H = T ]

2

)
+ 1

2

( [T = H]
2 + [T = T ]

2

)
≡ 1

2

(1
2 + 0

2

)
+ 1

2

(0
2 + 1

2

)
≡ 1

2

Apply second interpretation: the faces are the same with probability 1
2

How to interpret the expectations in

wp.(x := H 1
2
⊕ x := T ).

( [x = H]
2 + [x = T ]

2

)
?
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2

)
+ 1

2

(0
2 + 1

2

)
≡ 1

2

Apply second interpretation: the faces are the same with probability 1
2

How to interpret the expectations in

wp.(x := H 1
2
⊕ x := T ).

( [x = H]
2 + [x = T ]

2

)
?
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How to interpret the expectations in

wp.(x := H 1
2
⊕ x := T ).

( [x = H]
2 + [x = T ]

2

)
?

Interpretations:

1. the expected value [P ] of the final state is at least the value of p in the initial state

⇒ the expected value of the expression [x=H]
2 + [x=T ]

2 after executing the program
x := H 1

2
⊕ x := T

2.

For our overall reasoning we only need the second interpretation and the first one is only “glue”
that holds our reasoning together.
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Properties of pGCL

All GCL commands satisfy conjunctivity:

wp.S.(P ∧ P ′) = wp.S.P ∧ wp.S.P ′

Do we need that also for pGCL?

We do not have conjunctivity in pGCL, but sub-linearity (it generalizes conjunctivity): Let a, b,
c be non-negative finite reals, and P , P ′ expectations, then all pGCL constructs satisfy

wp.S.(aP + bP ′ 	 c)W a(wp.S.P ) + b(wp.S.P ′)	 c

where truncated subtraction 	 is defined as x	 y := (x− y) max 0
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Monotonicity

Increasing a post-expectation can only increase the pre-expectation. Suppose P V P ′ for two
expectations P , P ′ then

wp.S.P V wp.S.P ′

Suppose P V P ′ for two expectations P, P ′:

wp.S.P ′

≡ wp.S.(P + (P ′ − P ))
W wp.S.P + wp.S.(P ′ − P )
W wp.S.P
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Feasibility

Pre-expectations cannot be “too large”.

wp.S.P V max P

Scaling

Multiplication by a non-negative constant distributes through commands.

Note we already
have one direction due to sub-linearity:

c ∗ wp.S.P wp.S.(c ∗ P )
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Probabilistic Conjunctivity?

• standard “∧” is not defined over numbers

• it should act analogue as “∧” due to embedded boolean
• obvious min and ∗ do not apply

We define & as:

exp & exp’ := exp + exp’	 1

0 & 0 = 0
0 & 1 = 0
1 & 0 = 0
1 & 1 = 1

Sub-Conjunctivity

As & sub-distributes through expectation transformers and from sub-linearity with
a, b, c := 1, 1, 1 we have:

wp.S.P & wp.S.P ′ V wp.S.(P & P ′)

for all S.
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Overview

• Guarded Command Language (GCL)

• Probabilistic Guarded Command Language (pGCL)

• Abstraction and Refinement

• Probably Hoare? Hoare Probably!

• Abstraction Refinement and Proof for Probabilistic Systems
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Do we Have to Deal with Probability in weakest
pre-expectations/pre-conditions?

Short answer: Yes.

Why?

Probabilistic Hoare triples would allow easier reasoning:

p ` {pre} prog {post}

Hoare triple holds with at least probability p.

Fair & Unfair Coin

Consider the following programs fair & unfair:

fair x := A u (x := B 1
2
⊕ x := C)

unfair (x := A u x := B) 1
2
⊕ (x := A u x := C)
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Fair & Unfair Coin

Consider the following programs fair & unfair:

fair x := A u (x := B 1
2
⊕ x := C)

unfair (x := A u x := B) 1
2
⊕ (x := A u x := C)

The Programs Cannot Be Distinguished

all post-conditions fair probabilities unfair probabilities
false 0 = 0 = 0

x = A 1 min 0 = 0 = 1
2 (1 min 0) + 1

2 (1 min 0)
x = B 0 min 1

2 = 0 = 1
2 (0 min 1) + 1

2 (0 min 0)
x = C 0 min 1

2 = 0 = 1
2 (0 min 0) + 1

2 (0 min 1)
x 6= A 0 min 1 = 0 = 1

2 (0 min 1) + 1
2 (0 min 1)

x 6= B 1 min 1
2 = 1

2 = 1
2 (1 min 0) + 1

2 (1 min 1)
x 6= C 1 min 1

2 = 1
2 = 1

2 (1 min 1) + 1
2 (1 min 0)

true 1 = 1 = 1
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Hoare Probably!

Let preExp, postExp be real-valued expressions in the program variables:

{preExp} prog {postExp}

preExp evaluated in the initial state gives a lower bound for the expected value of expression
postExp.

It subsumes our earlier defined probably Hoare semantics:

{p× [pre]} prog {[post]}

From any initial state satisfying pre, prog will reach a final state satisfying post with
probability p.

postExp fair preExp unfair preExp

[x = A] + 2[x = B] 1 1
2

fair refines unfair
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Sub-Linearity

For any reals a, b, c ≥ 0 and expectations preExp, preExp′, postExp, postExp′, from

{preExp} S {postExp}
and {preExp′} S {postExp′}

follows

{a× preExp + b× preExp′ 	 c} S {a× postExp + b× postExp′ 	 c}
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Monte Carlo Algorithms

A probabilistic primality testing algorithm establishes a number’s prime, with arbitrary high
probability, by repeated failure to show that it is composite ⇒ example for iterated
Monte-Carlo algorithm

We want to decide a computationally expensive Boolean B (e.g. “a given number is prime”,
proof search). A Monte-Carlo algorithm for that is a computationally cheap and
guaranteed-to-terminate procedure which probably decides B (no Las-Vegas procedure).

Such a procedure for B could be specified as:

b := B ≥p⊕ (b := True u b := False)

where B is the desired result.

It is equal to:

b := B u
(
b := B p⊕ (b := True u b := False)

)
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Probabilistic Primality

Instantiation with probabilistic primality:

if B then b := True else
b := False ≥ 1

2
⊕ b := True

fi

We would like to have [b = B] as post-expectation, meaning the program reveals in b the
value of unknown B. As pre-expectation we use 1CB B 1− 1

2N , so we seek for a program
Decide which such that

{

1CB B 1− 1
2N

} Decide {b = B}

Furthermore we need an invariant and choose:

Inv = [b]CB B 1− [b]
2n
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Probabilistic Primality cont’d

{1CB B 1− 1
2N
}

b, n := True, N ;
do n 6= 0 ∧ b→

CheckOnce;
n := n− 1

od

{b = B}
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Probabilistic Primality cont’d

We carry out the checks for the invariant.

• Check that the invariant is established at initialization:

{1CB B 1− 1
2N
} b, n := True, N {Inv}

That is we want to check

1CB B 1− 1
2N
V Inv[b, n := True, N ]

= 1CB B 1− 1
2N
V [True]CB B 1− [True]

2N

• Check for post-condition on termination:
When n = 0 or ¬b holds:

1CB B 1− 1
2N
V [b]CB B [¬b]
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Probabilistic Primality cont’d

• Loop body including decrement in invariant:

{1CB B 1− 1
2n
} CheckOnce {1CB B 1− 1

2n−1 }

and we assume the truth of the loop guard ⇒ n 6= 0 ∧ b.

+ When B holds CheckOnce should behave like skip and corresponds to the first part of our
instantiation:

if B then b := T rue else · · ·

+ When B does not hold, we use b := F alse, which makes both expectations 1.
⇒ Which is also part of our instantiation.
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Probabilistic Primality cont’d

The other part is
b := False 1

2
⊕ b := True

. For this we have an inference rule for probabilistic choice:

We just need to calculate the
pre-expectation:

1
21 + 1

2(1− 1
2n−1 ) = 1− 1

2n
= “note that b holds” 1− [b]

2n

Thus CheckOnce is implemented by our instantiation.
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Overview

• Guarded Command Language (GCL)

• Probabilistic Guarded Command Language (pGCL)

• Abstraction and Refinement

• Probably Hoare? Hoare Probably!

• Abstraction Refinement and Proof for Probabilistic Systems
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Abstraction Refinement and Proof for Probabilistic Systems
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Short Overview of the Book

• Part I: Probabilistic guarded commands: introduction + probabilistic loop invariants and
variants

• Part II: Semantic structures: this part develops in detail the mathematics on which the
probabilistic logic is built and with which it is justified (correctness).

• Part III: Advanced topics: this part concentrates on more exotic methods of specification
and design, in this case probabilistic temporal/modal logics.

• Part IV: Appendices, bibliography and indexes
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Summary

• GCL ⇒ pGCL
• wp-semantics of pGCL
• healthiness properties of pGCL
• probably Hoare semantics vs. Hoare probably semantics
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Thank you for your attention!
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