
Abstraction, Refinement and Proof in a
Probabilistic Setting
Master Seminar WS20/21

Jonas Schöpf

November 25, 2020 & December 1, 2020

https://uibk.ac.at

Motivation

• model natural/physical processes ⇒ “real” coin flip

• primality tests ⇒ cryptography
• machine learning
• improvement of algorithms, e.g., quicksort

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 2/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Motivation

• model natural/physical processes ⇒ “real” coin flip
• primality tests ⇒ cryptography

• machine learning
• improvement of algorithms, e.g., quicksort

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 2/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Motivation

• model natural/physical processes ⇒ “real” coin flip
• primality tests ⇒ cryptography
• machine learning

• improvement of algorithms, e.g., quicksort

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 2/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Motivation

• model natural/physical processes ⇒ “real” coin flip
• primality tests ⇒ cryptography
• machine learning
• improvement of algorithms, e.g., quicksort

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 2/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Motivation - Quicksort
• “standard” vs. randomized quicksort

• first vs. last vs. random vs. median pivot element
• worst case: O(n2) vs. O(n2) (BUT expected or average time complexity is O(n log n))

Example Quicksort

[10, 80, 30, 90, 40, 50, 70]

[80, 90]

[][80]

[10, 30, 40, 50]

[][10, 30, 40]

[][10, 30]

[][10]

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 3/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Motivation - Quicksort
• “standard” vs. randomized quicksort

• first vs. last vs. random vs. median pivot element
• worst case: O(n2) vs. O(n2) (BUT expected or average time complexity is O(n log n))

Example Quicksort

[10, 80, 30, 90, 40, 50, 70]

[80, 90]

[][80]

[10, 30, 40, 50]

[][10, 30, 40]

[][10, 30]

[][10]

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 3/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Motivation - Quicksort
• “standard” vs. randomized quicksort
• first vs. last vs. random vs. median pivot element

• worst case: O(n2) vs. O(n2) (BUT expected or average time complexity is O(n log n))

Example Quicksort

[10, 80, 30, 90, 40, 50, 70]

[80, 90]

[][80]

[10, 30, 40, 50]

[][10, 30, 40]

[][10, 30]

[][10]

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 3/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Motivation - Quicksort
• “standard” vs. randomized quicksort
• first vs. last vs. random vs. median pivot element
• worst case: O(n2) vs. O(n2) (BUT expected or average time complexity is O(n log n))

Example Quicksort

[10, 80, 30, 90, 40, 50, 70]

[80, 90]

[][80]

[10, 30, 40, 50]

[][10, 30, 40]

[][10, 30]

[][10]

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 3/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Overview

• Guarded Command Language (GCL)

• Probabilistic Guarded Command Language (pGCL)

• Abstraction and Refinement

• Probably Hoare? Hoare Probably!

• Abstraction Refinement and Proof for Probabilistic Systems

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 4/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Overview

• Guarded Command Language (GCL)

• Probabilistic Guarded Command Language (pGCL)

• Abstraction and Refinement

• Probably Hoare? Hoare Probably!

• Abstraction Refinement and Proof for Probabilistic Systems

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 5/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Guarded Command Language (GCL)

• simple (⇒ simplicity in reasoning helps)
• “statement list prefixed by a boolean expression”

• alternative construct & repetitive construct
• used for weakest-pre-condition semantics

Syntax of GCL

〈guarded command〉 ::= 〈guard〉 → 〈guarded list〉
〈guard〉 ::= 〈boolean expression〉

〈guarded list〉 ::= 〈statement〉{;〈statement〉}

〈guarded command set〉 ::= 〈guarded command〉{�〈guarded command〉}
〈alternative construct〉 ::= if〈guarded command set〉fi
〈repetitive construct〉 ::= do〈guarded command set〉od

〈statement〉 ::= 〈alternative construct〉 | 〈repetitive construct〉 | “other statements”

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 6/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Guarded Command Language (GCL)

• simple (⇒ simplicity in reasoning helps)
• “statement list prefixed by a boolean expression”
• alternative construct & repetitive construct

• used for weakest-pre-condition semantics

Syntax of GCL

〈guarded command〉 ::= 〈guard〉 → 〈guarded list〉
〈guard〉 ::= 〈boolean expression〉

〈guarded list〉 ::= 〈statement〉{;〈statement〉}

〈guarded command set〉 ::= 〈guarded command〉{�〈guarded command〉}
〈alternative construct〉 ::= if〈guarded command set〉fi
〈repetitive construct〉 ::= do〈guarded command set〉od

〈statement〉 ::= 〈alternative construct〉 | 〈repetitive construct〉 | “other statements”

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 6/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Guarded Command Language (GCL)

• simple (⇒ simplicity in reasoning helps)
• “statement list prefixed by a boolean expression”
• alternative construct & repetitive construct
• used for weakest-pre-condition semantics

Syntax of GCL

〈guarded command〉 ::= 〈guard〉 → 〈guarded list〉
〈guard〉 ::= 〈boolean expression〉

〈guarded list〉 ::= 〈statement〉{;〈statement〉}

〈guarded command set〉 ::= 〈guarded command〉{�〈guarded command〉}
〈alternative construct〉 ::= if〈guarded command set〉fi
〈repetitive construct〉 ::= do〈guarded command set〉od

〈statement〉 ::= 〈alternative construct〉 | 〈repetitive construct〉 | “other statements”

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 6/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Guarded Command Language (GCL)

• simple (⇒ simplicity in reasoning helps)
• “statement list prefixed by a boolean expression”
• alternative construct & repetitive construct
• used for weakest-pre-condition semantics

Syntax of GCL

〈guarded command〉 ::= 〈guard〉 → 〈guarded list〉
〈guard〉 ::= 〈boolean expression〉

〈guarded list〉 ::= 〈statement〉{;〈statement〉}
〈guarded command set〉 ::= 〈guarded command〉{�〈guarded command〉}

〈alternative construct〉 ::= if〈guarded command set〉fi
〈repetitive construct〉 ::= do〈guarded command set〉od

〈statement〉 ::= 〈alternative construct〉 | 〈repetitive construct〉 | “other statements”

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 6/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Guarded Command Language (GCL)

• simple (⇒ simplicity in reasoning helps)
• “statement list prefixed by a boolean expression”
• alternative construct & repetitive construct
• used for weakest-pre-condition semantics

Syntax of GCL

〈guarded command〉 ::= 〈guard〉 → 〈guarded list〉
〈guard〉 ::= 〈boolean expression〉

〈guarded list〉 ::= 〈statement〉{;〈statement〉}
〈guarded command set〉 ::= 〈guarded command〉{�〈guarded command〉}

〈alternative construct〉 ::= if〈guarded command set〉fi
〈repetitive construct〉 ::= do〈guarded command set〉od

〈statement〉 ::= 〈alternative construct〉 | 〈repetitive construct〉 | “other statements”

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 6/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Guarded Command Language (GCL)

• simple (⇒ simplicity in reasoning helps)
• “statement list prefixed by a boolean expression”
• alternative construct & repetitive construct
• used for weakest-pre-condition semantics

Syntax of GCL

〈guarded command〉 ::= 〈guard〉 → 〈guarded list〉
〈guard〉 ::= 〈boolean expression〉

〈guarded list〉 ::= 〈statement〉{;〈statement〉}
〈guarded command set〉 ::= 〈guarded command〉{�〈guarded command〉}
〈alternative construct〉 ::= if〈guarded command set〉fi
〈repetitive construct〉 ::= do〈guarded command set〉od

〈statement〉 ::= 〈alternative construct〉 | 〈repetitive construct〉 | “other statements”

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 6/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Alternative Construct

if x ≥ y → m := x

� y ≥ x→ m := y

fi

Repetitive Construct

k := 0; j := 1;
do j 6= n→ if f(j) ≤ f(k)→ j := j + 1

� f(j) ≥ f(k)→ k := j; j := j + 1
fi

od

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 7/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Alternative Construct (Nondeterminism)

if x ≥ y → m := x

� y ≥ x→ m := y

fi

Repetitive Construct

k := 0; j := 1;
do j 6= n→ if f(j) ≤ f(k)→ j := j + 1

� f(j) ≥ f(k)→ k := j; j := j + 1
fi

od

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 7/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Alternative Construct (Nondeterminism)

if x ≥ y → m := x

� y ≥ x→ m := y

fi

Repetitive Construct

k := 0; j := 1;
do j 6= n→ if f(j) ≤ f(k)→ j := j + 1

� f(j) ≥ f(k)→ k := j; j := j + 1
fi

od

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 7/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Overview

• Guarded Command Language (GCL)

• Probabilistic Guarded Command Language (pGCL)

• Abstraction and Refinement

• Probably Hoare? Hoare Probably!

• Abstraction Refinement and Proof for Probabilistic Systems

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 8/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Primer: Nondeterminism vs. Determinism

“the simplicity and elegance of the above would have been destroyed by requiring the
derivation of deterministic programs only” – E.W.Dijkstra in [1]

Nondeterminism Example NE

if x ≥ y → m := x

� y ≥ x→ m := y

fi

Determinism Example DE

if x > y → m := x

� y < x→ m := y

� y = x→ m := y

fi

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 9/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Primer: Nondeterminism vs. Determinism

“the simplicity and elegance of the above would have been destroyed by requiring the
derivation of deterministic programs only” – E.W.Dijkstra in [1]

Nondeterminism Example NE

if x ≥ y → m := x

� y ≥ x→ m := y

fi

Determinism Example DE

if x > y → m := x

� y < x→ m := y

� y = x→ m := y

fi

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 9/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Primer: Nondeterminism vs. Determinism

“the simplicity and elegance of the above would have been destroyed by requiring the
derivation of deterministic programs only” – E.W.Dijkstra in [1]

Nondeterminism Example NE

if x ≥ y → m := x

� y ≥ x→ m := y

fi

Determinism Example DE

if x > y → m := x

� y < x→ m := y

� y = x→ m := y

fi

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 9/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Primer cont’d

“Assertions about programs” are predicates that are supposed to be “true at this point of the
program”.

Formalized — into logic — it looks as:

{pre} prog {post} Hoare-style
or preV wp.prog.post Dijkstra-style

Example

{x = y} NE {m = y}
or (x = y)V wp.NE.(m = y) later V . . . ”is no more than”

• reasoning about weakest pre-conditions of programs ⇒ weakest pre-condition semantics
• Hoare logic = formal system (set of logical rules) for reasoning about the correctness of

programs

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 10/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Primer cont’d

“Assertions about programs” are predicates that are supposed to be “true at this point of the
program”.

Formalized — into logic — it looks as:

{pre} prog {post} Hoare-style
or preV wp.prog.post Dijkstra-style

Example

{x = y} NE {m = y}
or (x = y)V wp.NE.(m = y) later V . . . ”is no more than”

• reasoning about weakest pre-conditions of programs ⇒ weakest pre-condition semantics
• Hoare logic = formal system (set of logical rules) for reasoning about the correctness of

programs

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 10/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Primer cont’d

“Assertions about programs” are predicates that are supposed to be “true at this point of the
program”.

Formalized — into logic — it looks as:

{pre} prog {post} Hoare-style
or preV wp.prog.post Dijkstra-style

Example

{x = y} NE {m = y}
or (x = y)V wp.NE.(m = y) later V . . . ”is no more than”

• reasoning about weakest pre-conditions of programs ⇒ weakest pre-condition semantics
• Hoare logic = formal system (set of logical rules) for reasoning about the correctness of

programs

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 10/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Primer cont’d

“Assertions about programs” are predicates that are supposed to be “true at this point of the
program”.

Formalized — into logic — it looks as:

{pre} prog {post} Hoare-style
or preV wp.prog.post Dijkstra-style

Example

{x = y} NE {m = y}
or (x = y)V wp.NE.(m = y) later V . . . ”is no more than”

• reasoning about weakest pre-conditions of programs ⇒ weakest pre-condition semantics

• Hoare logic = formal system (set of logical rules) for reasoning about the correctness of
programs

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 10/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Primer cont’d

“Assertions about programs” are predicates that are supposed to be “true at this point of the
program”.

Formalized — into logic — it looks as:

{pre} prog {post} Hoare-style
or preV wp.prog.post Dijkstra-style

Example

{x = y} NE {m = y}
or (x = y)V wp.NE.(m = y) later V . . . ”is no more than”

• reasoning about weakest pre-conditions of programs ⇒ weakest pre-condition semantics
• Hoare logic = formal system (set of logical rules) for reasoning about the correctness of

programs

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 10/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

How to Use GCL in a Probabilistic Setting?

• deterministic vs. nondeterministic vs. probabilistic choice
• ’demonic’ choice in GCL by Dijkstra (first overlapping guards)

Demonic Choice

• first not fundamental ⇒ abandoned

• replaced by probabilistic choice
• probabilistic semantics divorced
• deterministic refines probabilistic choice, which refines demonic choice

Demonic Choice Operator

this u that

Basically means, that it does not matter if we choose this or that.

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 11/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

How to Use GCL in a Probabilistic Setting?

• deterministic vs. nondeterministic vs. probabilistic choice
• ’demonic’ choice in GCL by Dijkstra (first overlapping guards)

Demonic Choice

• first not fundamental ⇒ abandoned

• replaced by probabilistic choice
• probabilistic semantics divorced
• deterministic refines probabilistic choice, which refines demonic choice

Demonic Choice Operator

this u that

Basically means, that it does not matter if we choose this or that.

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 11/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

How to Use GCL in a Probabilistic Setting?

• deterministic vs. nondeterministic vs. probabilistic choice
• ’demonic’ choice in GCL by Dijkstra (first overlapping guards)

Demonic Choice

• first not fundamental ⇒ abandoned
• replaced by probabilistic choice

• probabilistic semantics divorced
• deterministic refines probabilistic choice, which refines demonic choice

Demonic Choice Operator

this u that

Basically means, that it does not matter if we choose this or that.

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 11/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

How to Use GCL in a Probabilistic Setting?

• deterministic vs. nondeterministic vs. probabilistic choice
• ’demonic’ choice in GCL by Dijkstra (first overlapping guards)

Demonic Choice

• first not fundamental ⇒ abandoned
• replaced by probabilistic choice
• probabilistic semantics divorced

• deterministic refines probabilistic choice, which refines demonic choice

Demonic Choice Operator

this u that

Basically means, that it does not matter if we choose this or that.

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 11/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

How to Use GCL in a Probabilistic Setting?

• deterministic vs. nondeterministic vs. probabilistic choice
• ’demonic’ choice in GCL by Dijkstra (first overlapping guards)

Demonic Choice

• first not fundamental ⇒ abandoned
• replaced by probabilistic choice
• probabilistic semantics divorced
• deterministic refines probabilistic choice, which refines demonic choice

Demonic Choice Operator

this u that

Basically means, that it does not matter if we choose this or that.

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 11/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

How to Use GCL in a Probabilistic Setting?

• deterministic vs. nondeterministic vs. probabilistic choice
• ’demonic’ choice in GCL by Dijkstra (first overlapping guards)

Demonic Choice

• first not fundamental ⇒ abandoned
• replaced by probabilistic choice
• probabilistic semantics divorced
• deterministic refines probabilistic choice, which refines demonic choice

Demonic Choice Operator

this u that

Basically means, that it does not matter if we choose this or that.

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 11/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Probabilistic Guarded Command Language (pGCL)

⇒ extension of GCL to incorporate probabilities & demonic choice

⇒ acts over expectations rather than predicates; an expectation is real
special case: [P] is probability that predicate P holds, so if false, then [P] = 0, if true
[P] = 1

(Part of the) Syntax of pGCL

〈prog〉 := abort | skip | x := E | 〈prog〉; 〈prog〉

〈prog〉 p⊕ 〈prog〉 | 〈prog〉 u 〈prog〉 |
(mu xxx · C)

Probabilistic Choice Operator: Coin Flip

Tail 1
2
⊕ Head . . . fair coin

no perfect coins in nature:
Tail 0.49⊕ Head u Tail 0.51⊕ Head . . . nearly fair coin

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 12/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Probabilistic Guarded Command Language (pGCL)

⇒ extension of GCL to incorporate probabilities & demonic choice
⇒ acts over expectations rather than predicates; an expectation is real

special case: [P] is probability that predicate P holds, so if false, then [P] = 0, if true
[P] = 1

(Part of the) Syntax of pGCL

〈prog〉 := abort | skip | x := E | 〈prog〉; 〈prog〉

〈prog〉 p⊕ 〈prog〉 | 〈prog〉 u 〈prog〉 |
(mu xxx · C)

Probabilistic Choice Operator: Coin Flip

Tail 1
2
⊕ Head . . . fair coin

no perfect coins in nature:
Tail 0.49⊕ Head u Tail 0.51⊕ Head . . . nearly fair coin

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 12/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Probabilistic Guarded Command Language (pGCL)

⇒ extension of GCL to incorporate probabilities & demonic choice
⇒ acts over expectations rather than predicates; an expectation is real

special case: [P] is probability that predicate P holds, so if false, then [P] = 0, if true
[P] = 1

(Part of the) Syntax of pGCL

〈prog〉 := abort | skip | x := E | 〈prog〉; 〈prog〉

〈prog〉 p⊕ 〈prog〉 | 〈prog〉 u 〈prog〉 |
(mu xxx · C)

Probabilistic Choice Operator: Coin Flip

Tail 1
2
⊕ Head . . . fair coin

no perfect coins in nature:
Tail 0.49⊕ Head u Tail 0.51⊕ Head . . . nearly fair coin

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 12/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Probabilistic Guarded Command Language (pGCL)

⇒ extension of GCL to incorporate probabilities & demonic choice
⇒ acts over expectations rather than predicates; an expectation is real

special case: [P] is probability that predicate P holds, so if false, then [P] = 0, if true
[P] = 1

(Part of the) Syntax of pGCL

〈prog〉 := abort | skip | x := E | 〈prog〉; 〈prog〉
〈prog〉 p⊕ 〈prog〉 | 〈prog〉 u 〈prog〉 |

(mu xxx · C)

Probabilistic Choice Operator: Coin Flip

Tail 1
2
⊕ Head . . . fair coin

no perfect coins in nature:
Tail 0.49⊕ Head u Tail 0.51⊕ Head . . . nearly fair coin

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 12/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Probabilistic Guarded Command Language (pGCL)

⇒ extension of GCL to incorporate probabilities & demonic choice
⇒ acts over expectations rather than predicates; an expectation is real

special case: [P] is probability that predicate P holds, so if false, then [P] = 0, if true
[P] = 1

(Part of the) Syntax of pGCL

〈prog〉 := abort | skip | x := E | 〈prog〉; 〈prog〉
〈prog〉 p⊕ 〈prog〉 | 〈prog〉 u 〈prog〉 |
(mu xxx · C)

Probabilistic Choice Operator: Coin Flip

Tail 1
2
⊕ Head . . . fair coin

no perfect coins in nature:
Tail 0.49⊕ Head u Tail 0.51⊕ Head . . . nearly fair coin

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 12/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Probabilistic Guarded Command Language (pGCL)

⇒ extension of GCL to incorporate probabilities & demonic choice
⇒ acts over expectations rather than predicates; an expectation is real

special case: [P] is probability that predicate P holds, so if false, then [P] = 0, if true
[P] = 1

(Part of the) Syntax of pGCL

〈prog〉 := abort | skip | x := E | 〈prog〉; 〈prog〉
〈prog〉 p⊕ 〈prog〉 | 〈prog〉 u 〈prog〉 |
(mu xxx · C)

Probabilistic Choice Operator: Coin Flip

Tail 1
2
⊕ Head . . . fair coin

no perfect coins in nature:
Tail 0.49⊕ Head u Tail 0.51⊕ Head . . . nearly fair coin

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 12/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Probabilistic Guarded Command Language (pGCL)

⇒ extension of GCL to incorporate probabilities & demonic choice
⇒ acts over expectations rather than predicates; an expectation is real

special case: [P] is probability that predicate P holds, so if false, then [P] = 0, if true
[P] = 1

(Part of the) Syntax of pGCL

〈prog〉 := abort | skip | x := E | 〈prog〉; 〈prog〉
〈prog〉 p⊕ 〈prog〉 | 〈prog〉 u 〈prog〉 |
(mu xxx · C)

Probabilistic Choice Operator: Coin Flip

Tail 1
2
⊕ Head . . . fair coin

no perfect coins in nature:

Tail 0.49⊕ Head u Tail 0.51⊕ Head . . . nearly fair coin

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 12/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Probabilistic Guarded Command Language (pGCL)

⇒ extension of GCL to incorporate probabilities & demonic choice
⇒ acts over expectations rather than predicates; an expectation is real

special case: [P] is probability that predicate P holds, so if false, then [P] = 0, if true
[P] = 1

(Part of the) Syntax of pGCL

〈prog〉 := abort | skip | x := E | 〈prog〉; 〈prog〉
〈prog〉 p⊕ 〈prog〉 | 〈prog〉 u 〈prog〉 |
(mu xxx · C)

Probabilistic Choice Operator: Coin Flip

Tail 1
2
⊕ Head . . . fair coin

no perfect coins in nature:
Tail 0.49⊕ Head u Tail 0.51⊕ Head . . . nearly fair coin

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 12/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

pGCL cont’d

There exist more constructs such as:
• Boolean embedding of predicate pred as expectation:

[pred] := “if pred then 1 else 0”

• Conditional:

if pred then prog else prog’ fi := prog [pred]⊕ prog’

• Multi-way probabilistic choices
• Variations on p⊕
• Demonic choice in variable assignments
• Iteration

do pred→ body od := (mu xxx · (body; xxx) if pred else skip)

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 13/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

pGCL cont’d

There exist more constructs such as:
• Boolean embedding of predicate pred as expectation:

[pred] := “if pred then 1 else 0”

• Conditional:

if pred then prog else prog’ fi := prog [pred]⊕ prog’

• Multi-way probabilistic choices
• Variations on p⊕
• Demonic choice in variable assignments
• Iteration

do pred→ body od := (mu xxx · (body; xxx) if pred else skip)

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 13/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

pGCL cont’d

There exist more constructs such as:
• Boolean embedding of predicate pred as expectation:

[pred] := “if pred then 1 else 0”

• Conditional:

if pred then prog else prog’ fi := prog [pred]⊕ prog’

• Multi-way probabilistic choices
• Variations on p⊕
• Demonic choice in variable assignments

• Iteration

do pred→ body od := (mu xxx · (body; xxx) if pred else skip)

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 13/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

pGCL cont’d

There exist more constructs such as:
• Boolean embedding of predicate pred as expectation:

[pred] := “if pred then 1 else 0”

• Conditional:

if pred then prog else prog’ fi := prog [pred]⊕ prog’

• Multi-way probabilistic choices
• Variations on p⊕
• Demonic choice in variable assignments
• Iteration

do pred→ body od := (mu xxx · (body; xxx) if pred else skip)

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 13/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

• Implication-like relations for expectations exp, exp’:

expV exp’ means exp is everywhere less than or equal to exp’
exp ≡ exp’ means exp and exp’ are everywhere equal
expW exp’ means exp is everywhere greater than or equal to exp’

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 14/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

wp-Semantics of pGCL

wp.abort.postE := 0
wp.skip.postE := postE

wp.(x := expr).postE := postE〈x 7→ expr〉
wp.(prog; prog’).postE := wp.prog.(wp.prog’.postE)

wp.(prog u prog’).postE := wp.prog.postE min wp.prog’.postE
wp.(prog p⊕ prog’).postE := p ∗ wp.prog.postE + (1− p) ∗ wp.prog’.postE

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 15/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

wp-Semantics of pGCL

wp.abort.postE := 0
wp.skip.postE := postE

wp.(x := expr).postE := postE〈x 7→ expr〉
wp.(prog; prog’).postE := wp.prog.(wp.prog’.postE)

wp.(prog u prog’).postE := wp.prog.postE min wp.prog’.postE
wp.(prog p⊕ prog’).postE := p ∗ wp.prog.postE + (1− p) ∗ wp.prog’.postE

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 15/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

wp-Semantics of pGCL

wp.abort.postE := 0
wp.skip.postE := postE

wp.(x := expr).postE := postE〈x 7→ expr〉

wp.(prog; prog’).postE := wp.prog.(wp.prog’.postE)
wp.(prog u prog’).postE := wp.prog.postE min wp.prog’.postE

wp.(prog p⊕ prog’).postE := p ∗ wp.prog.postE + (1− p) ∗ wp.prog’.postE

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 15/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

wp-Semantics of pGCL

wp.abort.postE := 0
wp.skip.postE := postE

wp.(x := expr).postE := postE〈x 7→ expr〉
wp.(prog; prog’).postE := wp.prog.(wp.prog’.postE)

wp.(prog u prog’).postE := wp.prog.postE min wp.prog’.postE
wp.(prog p⊕ prog’).postE := p ∗ wp.prog.postE + (1− p) ∗ wp.prog’.postE

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 15/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

wp-Semantics of pGCL

wp.abort.postE := 0
wp.skip.postE := postE

wp.(x := expr).postE := postE〈x 7→ expr〉
wp.(prog; prog’).postE := wp.prog.(wp.prog’.postE)

wp.(prog u prog’).postE := wp.prog.postE min wp.prog’.postE

wp.(prog p⊕ prog’).postE := p ∗ wp.prog.postE + (1− p) ∗ wp.prog’.postE

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 15/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

wp-Semantics of pGCL

wp.abort.postE := 0
wp.skip.postE := postE

wp.(x := expr).postE := postE〈x 7→ expr〉
wp.(prog; prog’).postE := wp.prog.(wp.prog’.postE)

wp.(prog u prog’).postE := wp.prog.postE min wp.prog’.postE
wp.(prog p⊕ prog’).postE := p ∗ wp.prog.postE + (1− p) ∗ wp.prog’.postE

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 15/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Overview

• Guarded Command Language (GCL)

• Probabilistic Guarded Command Language (pGCL)

• Abstraction and Refinement

• Probably Hoare? Hoare Probably!

• Abstraction Refinement and Proof for Probabilistic Systems

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 16/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

What is Abstraction?

Abstraction is the process of extracting the underlying structures, patterns or properties of a
mathematical concept or object, and generalizing it so that it has wider applications or
matching among other abstract descriptions of equivalent phenomena. — Wikipedia

What is Refinement? (Specialization)

Refinement is the process of refining the underlying structures, patterns or properties of
mathematical concepts or objects to a more specialized version.

Consider the input set I for functions/programs f , g, then g is a refinement of f if

{g(i) | i ∈ I} ⊂∗ {f(i) | i ∈ I}

*: N.B.: This is not true for all types of abstraction or how abstraction is used.

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 17/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

What is Abstraction?

Abstraction is the process of extracting the underlying structures, patterns or properties of a
mathematical concept or object, and generalizing it so that it has wider applications or
matching among other abstract descriptions of equivalent phenomena. — Wikipedia

What is Refinement? (Specialization)

Refinement is the process of refining the underlying structures, patterns or properties of
mathematical concepts or objects to a more specialized version.

Consider the input set I for functions/programs f , g, then g is a refinement of f if

{g(i) | i ∈ I} ⊂∗ {f(i) | i ∈ I}

*: N.B.: This is not true for all types of abstraction or how abstraction is used.

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 17/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example

x := −y 1
3
⊕ x := +y

We want to calculate:

wp.(x := −y 1
3
⊕ x := +y).[x ≥ 0]

Which means, “what is the probability that the predicate ’the final state, will satisfy x ≥ 0’
holds in some given initial state of the program?”

wp.(x := −y 1
3
⊕ x := +y).[x ≥ 0]

≡ 1
3 ∗ wp.(x := −y).[x ≥ 0] + 2

3 ∗ wp.(x := +y).[x ≥ 0]

≡ 1
3 ∗ [−y ≥ 0] + 2

3 ∗ [+y ≥ 0]

≡ [y < 0]
3 + [y = 0] + 2[+y ≥ 0]

3

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 18/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example

x := −y 1
3
⊕ x := +y

We want to calculate:

wp.(x := −y 1
3
⊕ x := +y).[x ≥ 0]

Which means, “what is the probability that the predicate ’the final state, will satisfy x ≥ 0’
holds in some given initial state of the program?”

wp.(x := −y 1
3
⊕ x := +y).[x ≥ 0]

≡ 1
3 ∗ wp.(x := −y).[x ≥ 0] + 2

3 ∗ wp.(x := +y).[x ≥ 0]

≡ 1
3 ∗ [−y ≥ 0] + 2

3 ∗ [+y ≥ 0]

≡ [y < 0]
3 + [y = 0] + 2[+y ≥ 0]

3

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 18/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example

x := −y 1
3
⊕ x := +y

We want to calculate:

wp.(x := −y 1
3
⊕ x := +y).[x ≥ 0]

Which means, “what is the probability that the predicate ’the final state, will satisfy x ≥ 0’
holds in some given initial state of the program?”

wp.(x := −y 1
3
⊕ x := +y).[x ≥ 0]

≡ 1
3 ∗ wp.(x := −y).[x ≥ 0] + 2

3 ∗ wp.(x := +y).[x ≥ 0]

≡ 1
3 ∗ [−y ≥ 0] + 2

3 ∗ [+y ≥ 0]

≡ [y < 0]
3 + [y = 0] + 2[+y ≥ 0]

3

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 18/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example

x := −y 1
3
⊕ x := +y

We want to calculate:

wp.(x := −y 1
3
⊕ x := +y).[x ≥ 0]

Which means, “what is the probability that the predicate ’the final state, will satisfy x ≥ 0’
holds in some given initial state of the program?”

wp.(x := −y 1
3
⊕ x := +y).[x ≥ 0]

≡ 1
3 ∗ wp.(x := −y).[x ≥ 0] + 2

3 ∗ wp.(x := +y).[x ≥ 0]

≡ 1
3 ∗ [−y ≥ 0] + 2

3 ∗ [+y ≥ 0]

≡ [y < 0]
3 + [y = 0] + 2[+y ≥ 0]

3

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 18/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example

x := −y 1
3
⊕ x := +y

We want to calculate:

wp.(x := −y 1
3
⊕ x := +y).[x ≥ 0]

Which means, “what is the probability that the predicate ’the final state, will satisfy x ≥ 0’
holds in some given initial state of the program?”

wp.(x := −y 1
3
⊕ x := +y).[x ≥ 0]

≡ 1
3 ∗ wp.(x := −y).[x ≥ 0] + 2

3 ∗ wp.(x := +y).[x ≥ 0]

≡ 1
3 ∗ [−y ≥ 0] + 2

3 ∗ [+y ≥ 0]

≡ [y < 0]
3 + [y = 0] + 2[+y ≥ 0]

3

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 18/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example

x := −y 1
3
⊕ x := +y

We want to calculate:

wp.(x := −y 1
3
⊕ x := +y).[x ≥ 0]

Which means, “what is the probability that the predicate ’the final state, will satisfy x ≥ 0’
holds in some given initial state of the program?”

wp.(x := −y 1
3
⊕ x := +y).[x ≥ 0]

≡ 1
3 ∗ wp.(x := −y).[x ≥ 0] + 2

3 ∗ wp.(x := +y).[x ≥ 0]

≡ 1
3 ∗ [−y ≥ 0] + 2

3 ∗ [+y ≥ 0]

≡ [y < 0]
3 + [y = 0] + 2[+y ≥ 0]

3

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 18/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example

x := −y 1
3
⊕ x := +y

We want to calculate:

wp.(x := −y 1
3
⊕ x := +y).[x ≥ 0]

Which means, “what is the probability that the predicate ’the final state, will satisfy x ≥ 0’
holds in some given initial state of the program?”

wp.(x := −y 1
3
⊕ x := +y).[x ≥ 0]

≡ 1
3 ∗ wp.(x := −y).[x ≥ 0] + 2

3 ∗ wp.(x := +y).[x ≥ 0]

≡ 1
3 ∗ [−y ≥ 0] + 2

3 ∗ [+y ≥ 0]

≡ [y < 0]
3 + [y = 0] + 2[+y ≥ 0]

3
JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 18/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example cont’d

[y < 0]
3 + [y = 0] + 2[+y ≥ 0]

3

This is our calculated pre-expectation.

The probabilities can be read off from it:
when y < 0 1

3 + 0 + 2 ∗ 0
3 = 1

3
when y = 0 0

3 + 1 + 2 ∗ 0
3 = 1

when y > 0 0
3 + 0 + 2 ∗ 1

3 = 2
3

How can we build a more abstract program of this Example?

x := −y 1
3
⊕ x := +y

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 19/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example cont’d

[y < 0]
3 + [y = 0] + 2[+y ≥ 0]

3

This is our calculated pre-expectation.

The probabilities can be read off from it:
when y < 0 1

3 + 0 + 2 ∗ 0
3 = 1

3
when y = 0 0

3 + 1 + 2 ∗ 0
3 = 1

when y > 0 0
3 + 0 + 2 ∗ 1

3 = 2
3

How can we build a more abstract program of this Example?

x := −y 1
3
⊕ x := +y

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 19/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example cont’d

[y < 0]
3 + [y = 0] + 2[+y ≥ 0]

3

This is our calculated pre-expectation.

The probabilities can be read off from it:
when y < 0 1

3 + 0 + 2 ∗ 0
3 = 1

3
when y = 0 0

3 + 1 + 2 ∗ 0
3 = 1

when y > 0 0
3 + 0 + 2 ∗ 1

3 = 2
3

How can we build a more abstract program of this Example?

x := −y 1
3
⊕ x := +y

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 19/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example Abstraction

• x := −y is to be executed with probability at least 1
3

• x := +y is to be executed with probability at least 1
4

• it is certain that one or the other will be executed

What else can we say from this specification?

x := −y 1
3
⊕ x := +y u x := −y 3

4
⊕ x := +y

We can also specify that a program part is executed given some range of probability.

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 20/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example Abstraction

• x := −y is to be executed with probability at least 1
3

• x := +y is to be executed with probability at least 1
4

• it is certain that one or the other will be executed

What else can we say from this specification?

x := −y 1
3
⊕ x := +y u x := −y 3

4
⊕ x := +y

We can also specify that a program part is executed given some range of probability.

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 20/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example Abstraction

• x := −y is to be executed with probability at least 1
3

• x := +y is to be executed with probability at least 1
4

• it is certain that one or the other will be executed

What else can we say from this specification?

x := −y 1
3
⊕ x := +y u x := −y 3

4
⊕ x := +y

We can also specify that a program part is executed given some range of probability.

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 20/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example Abstraction cont’d

(x := −y 1
3
⊕ x := +y) u (x := −y 3

4
⊕ x := +y)

Using again the wp-semantics, we compute the following

wp.((x := −y 1
3
⊕ x := +y) u (x := −y 3

4
⊕ x := +y)).[x ≥ 0]

≡ wp.(x := −y 1
3
⊕ x := +y).[x ≥ 0] min wp.(x := −y 3

4
⊕ x := +y).[x ≥ 0]

≡ [y ≤ 0]
3 + 2 ∗ [y ≥ 0]

3 min 3 ∗ [y ≤ 0]
4 + [y ≥ 0]

4

≡ [y < 0]
3 + [y = 0] + [y > 0]

4

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 21/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example Abstraction cont’d

(x := −y 1
3
⊕ x := +y) u (x := −y 3

4
⊕ x := +y)

Using again the wp-semantics, we compute the following

wp.((x := −y 1
3
⊕ x := +y) u (x := −y 3

4
⊕ x := +y)).[x ≥ 0]

≡ wp.(x := −y 1
3
⊕ x := +y).[x ≥ 0] min wp.(x := −y 3

4
⊕ x := +y).[x ≥ 0]

≡ [y ≤ 0]
3 + 2 ∗ [y ≥ 0]

3 min 3 ∗ [y ≤ 0]
4 + [y ≥ 0]

4

≡ [y < 0]
3 + [y = 0] + [y > 0]

4

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 21/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example Abstraction cont’d

(x := −y 1
3
⊕ x := +y) u (x := −y 3

4
⊕ x := +y)

Using again the wp-semantics, we compute the following

wp.((x := −y 1
3
⊕ x := +y) u (x := −y 3

4
⊕ x := +y)).[x ≥ 0]

≡ wp.(x := −y 1
3
⊕ x := +y).[x ≥ 0] min wp.(x := −y 3

4
⊕ x := +y).[x ≥ 0]

≡ [y ≤ 0]
3 + 2 ∗ [y ≥ 0]

3 min 3 ∗ [y ≤ 0]
4 + [y ≥ 0]

4

≡ [y < 0]
3 + [y = 0] + [y > 0]

4

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 21/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example Abstraction cont’d

(x := −y 1
3
⊕ x := +y) u (x := −y 3

4
⊕ x := +y)

Using again the wp-semantics, we compute the following

wp.((x := −y 1
3
⊕ x := +y) u (x := −y 3

4
⊕ x := +y)).[x ≥ 0]

≡ wp.(x := −y 1
3
⊕ x := +y).[x ≥ 0] min wp.(x := −y 3

4
⊕ x := +y).[x ≥ 0]

≡ [y ≤ 0]
3 + 2 ∗ [y ≥ 0]

3 min 3 ∗ [y ≤ 0]
4 + [y ≥ 0]

4

≡ [y < 0]
3 + [y = 0] + [y > 0]

4

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 21/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example Abstraction cont’d

(x := −y 1
3
⊕ x := +y) u (x := −y 3

4
⊕ x := +y)

Using again the wp-semantics, we compute the following

wp.((x := −y 1
3
⊕ x := +y) u (x := −y 3

4
⊕ x := +y)).[x ≥ 0]

≡ wp.(x := −y 1
3
⊕ x := +y).[x ≥ 0] min wp.(x := −y 3

4
⊕ x := +y).[x ≥ 0]

≡ [y ≤ 0]
3 + 2 ∗ [y ≥ 0]

3 min 3 ∗ [y ≤ 0]
4 + [y ≥ 0]

4

≡ [y < 0]
3 + [y = 0] + [y > 0]

4

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 21/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example Refinement

Refinement is the converse of abstraction:

S v T := wp.S.RV wp.T.R for all R

Consider the program of before:

(x := −y 1
3
⊕ x := +y) u (x := −y 3

4
⊕ x := +y)

This programs is a refinement according to the specification:

x := −y 1
2
⊕ x := +y

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 22/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example Refinement

Refinement is the converse of abstraction:

S v T := wp.S.RV wp.T.R for all R

Consider the program of before:

(x := −y 1
3
⊕ x := +y) u (x := −y 3

4
⊕ x := +y)

This programs is a refinement according to the specification:

x := −y 1
2
⊕ x := +y

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 22/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example Refinement

Refinement is the converse of abstraction:

S v T := wp.S.RV wp.T.R for all R

Consider the program of before:

(x := −y 1
3
⊕ x := +y) u (x := −y 3

4
⊕ x := +y)

This programs is a refinement according to the specification:

x := −y 1
2
⊕ x := +y

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 22/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example Refinement cont’d

Prove the following refinement relation:

(x := −y 1
3
⊕ x := +y) u (x := −y 3

4
⊕ x := +y)

Vx := −y 1
2
⊕ x := +y

Semantic Level

wp.(x := −y 1
2
⊕ x := +y).P

≡wp.(x := −y).P
2 + wp.(x := +y).P

2

≡P−

2 + P +

2

≡3
5 ∗ (P−

3 + 2 ∗ P +

3) + 2
5 ∗ (3 ∗ P−

4 + P +

4)

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 23/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example Refinement cont’d

Prove the following refinement relation:

(x := −y 1
3
⊕ x := +y) u (x := −y 3

4
⊕ x := +y)

Vx := −y 1
2
⊕ x := +y

Semantic Level

wp.(x := −y 1
2
⊕ x := +y).P

≡wp.(x := −y).P
2 + wp.(x := +y).P

2

≡P−

2 + P +

2

≡3
5 ∗ (P−

3 + 2 ∗ P +

3) + 2
5 ∗ (3 ∗ P−

4 + P +

4)

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 23/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example Refinement cont’d

Prove the following refinement relation:

(x := −y 1
3
⊕ x := +y) u (x := −y 3

4
⊕ x := +y)

Vx := −y 1
2
⊕ x := +y

Semantic Level

wp.(x := −y 1
2
⊕ x := +y).P

≡wp.(x := −y).P
2 + wp.(x := +y).P

2

≡P−

2 + P +

2

≡3
5 ∗ (P−

3 + 2 ∗ P +

3) + 2
5 ∗ (3 ∗ P−

4 + P +

4)

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 23/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example Refinement cont’d

Prove the following refinement relation:

(x := −y 1
3
⊕ x := +y) u (x := −y 3

4
⊕ x := +y)

Vx := −y 1
2
⊕ x := +y

Semantic Level

wp.(x := −y 1
2
⊕ x := +y).P

≡wp.(x := −y).P
2 + wp.(x := +y).P

2

≡P−

2 + P +

2

≡3
5 ∗ (P−

3 + 2 ∗ P +

3) + 2
5 ∗ (3 ∗ P−

4 + P +

4)

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 23/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example Refinement cont’d

Prove the following refinement relation:

(x := −y 1
3
⊕ x := +y) u (x := −y 3

4
⊕ x := +y)

Vx := −y 1
2
⊕ x := +y

Semantic Level

wp.(x := −y 1
2
⊕ x := +y).P

≡wp.(x := −y).P
2 + wp.(x := +y).P

2

≡P−

2 + P +

2

≡3
5 ∗ (P−

3 + 2 ∗ P +

3) + 2
5 ∗ (3 ∗ P−

4 + P +

4)

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 23/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

wp.(x := −y 1
2
⊕ x := +y).P

≡ wp.(x := −y).P
2 + wp.(x := +y).P

2

≡ P−

2 + P +

2

≡ 3
5 ∗ (P−

3 + 2 ∗ P +

3) + 2
5 ∗ (3 ∗ P−

4 + P +

4)

W
P−

3 + 2 ∗ P +

3 min 3 ∗ P−

4 + P +

4 because 3
5 ∗

1
3 + 2

5 ∗
3
4 = 1

2
and 3

5 ∗
2
3 + 2

5 ∗
1
4 = 1

2
≡ wp.(x := −y 1

3
⊕ x := +y u x := −y 3

4
⊕ x := +y).P

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 24/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

wp.(x := −y 1
2
⊕ x := +y).P

≡ wp.(x := −y).P
2 + wp.(x := +y).P

2

≡ P−

2 + P +

2

≡ 3
5 ∗ (P−

3 + 2 ∗ P +

3) + 2
5 ∗ (3 ∗ P−

4 + P +

4)

W
P−

3 + 2 ∗ P +

3 min 3 ∗ P−

4 + P +

4 because 3
5 ∗

1
3 + 2

5 ∗
3
4 = 1

2
and 3

5 ∗
2
3 + 2

5 ∗
1
4 = 1

2

≡ wp.(x := −y 1
3
⊕ x := +y u x := −y 3

4
⊕ x := +y).P

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 24/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

wp.(x := −y 1
2
⊕ x := +y).P

≡ wp.(x := −y).P
2 + wp.(x := +y).P

2

≡ P−

2 + P +

2

≡ 3
5 ∗ (P−

3 + 2 ∗ P +

3) + 2
5 ∗ (3 ∗ P−

4 + P +

4)

W
P−

3 + 2 ∗ P +

3 min 3 ∗ P−

4 + P +

4 because 3
5 ∗

1
3 + 2

5 ∗
3
4 = 1

2
and 3

5 ∗
2
3 + 2

5 ∗
1
4 = 1

2
≡ wp.(x := −y 1

3
⊕ x := +y u x := −y 3

4
⊕ x := +y).P

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 24/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Program Level

x := −y 1
2
⊕ x := +y

= (x := −y 1
3
⊕ x := +y) 3

5
⊕ (x := −y 3

4
⊕ x := +y)

w (x := −y 1
3
⊕ x := +y) u (x := −y 3

4
⊕ x := +y)

N.B.: Demonic choice can be refined by any probabilistic choice.

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 25/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Program Level

x := −y 1
2
⊕ x := +y

= (x := −y 1
3
⊕ x := +y) 3

5
⊕ (x := −y 3

4
⊕ x := +y)

w (x := −y 1
3
⊕ x := +y) u (x := −y 3

4
⊕ x := +y)

N.B.: Demonic choice can be refined by any probabilistic choice.

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 25/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Program Level

x := −y 1
2
⊕ x := +y

= (x := −y 1
3
⊕ x := +y) 3

5
⊕ (x := −y 3

4
⊕ x := +y)

w (x := −y 1
3
⊕ x := +y) u (x := −y 3

4
⊕ x := +y)

N.B.: Demonic choice can be refined by any probabilistic choice.

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 25/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Program Level

x := −y 1
2
⊕ x := +y

= (x := −y 1
3
⊕ x := +y) 3

5
⊕ (x := −y 3

4
⊕ x := +y)

w (x := −y 1
3
⊕ x := +y) u (x := −y 3

4
⊕ x := +y)

N.B.: Demonic choice can be refined by any probabilistic choice.

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 25/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Interpretation of pGCL Expectations

• in full generality, an expectation is a function describing the value of a program state

• where [pred] is a special case assigning 0 or 1 as value
• more general expectations: estimate the value of final state in the initial state

⇒ summation over final states
⇒ the value of the final state multiplied by the probability the program “will go there”
from the initial state

• naturally “will go there” depends on “from where”
Analyses of programs S lead to conclusions like

p ≡ wp.S.[P]

for some p and [P]. We can interpret them in two equivalent ways:
1. the expected value [P] of the final state is at least the value of p in the initial state; or

2. the probability that S will establish P is at least p.

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 26/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Interpretation of pGCL Expectations

• in full generality, an expectation is a function describing the value of a program state
• where [pred] is a special case assigning 0 or 1 as value

• more general expectations: estimate the value of final state in the initial state

⇒ summation over final states
⇒ the value of the final state multiplied by the probability the program “will go there”
from the initial state

• naturally “will go there” depends on “from where”
Analyses of programs S lead to conclusions like

p ≡ wp.S.[P]

for some p and [P]. We can interpret them in two equivalent ways:
1. the expected value [P] of the final state is at least the value of p in the initial state; or

2. the probability that S will establish P is at least p.

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 26/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Interpretation of pGCL Expectations

• in full generality, an expectation is a function describing the value of a program state
• where [pred] is a special case assigning 0 or 1 as value
• more general expectations: estimate the value of final state in the initial state

⇒ summation over final states
⇒ the value of the final state multiplied by the probability the program “will go there”
from the initial state

• naturally “will go there” depends on “from where”
Analyses of programs S lead to conclusions like

p ≡ wp.S.[P]

for some p and [P]. We can interpret them in two equivalent ways:
1. the expected value [P] of the final state is at least the value of p in the initial state; or

2. the probability that S will establish P is at least p.

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 26/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Interpretation of pGCL Expectations

• in full generality, an expectation is a function describing the value of a program state
• where [pred] is a special case assigning 0 or 1 as value
• more general expectations: estimate the value of final state in the initial state
⇒ summation over final states

⇒ the value of the final state multiplied by the probability the program “will go there”
from the initial state

• naturally “will go there” depends on “from where”
Analyses of programs S lead to conclusions like

p ≡ wp.S.[P]

for some p and [P]. We can interpret them in two equivalent ways:
1. the expected value [P] of the final state is at least the value of p in the initial state; or

2. the probability that S will establish P is at least p.

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 26/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Interpretation of pGCL Expectations

• in full generality, an expectation is a function describing the value of a program state
• where [pred] is a special case assigning 0 or 1 as value
• more general expectations: estimate the value of final state in the initial state
⇒ summation over final states
⇒ the value of the final state multiplied by the probability the program “will go there”
from the initial state

• naturally “will go there” depends on “from where”
Analyses of programs S lead to conclusions like

p ≡ wp.S.[P]

for some p and [P]. We can interpret them in two equivalent ways:
1. the expected value [P] of the final state is at least the value of p in the initial state; or

2. the probability that S will establish P is at least p.

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 26/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Interpretation of pGCL Expectations

• in full generality, an expectation is a function describing the value of a program state
• where [pred] is a special case assigning 0 or 1 as value
• more general expectations: estimate the value of final state in the initial state
⇒ summation over final states
⇒ the value of the final state multiplied by the probability the program “will go there”
from the initial state

• naturally “will go there” depends on “from where”

Analyses of programs S lead to conclusions like

p ≡ wp.S.[P]

for some p and [P]. We can interpret them in two equivalent ways:
1. the expected value [P] of the final state is at least the value of p in the initial state; or

2. the probability that S will establish P is at least p.

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 26/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Interpretation of pGCL Expectations

• in full generality, an expectation is a function describing the value of a program state
• where [pred] is a special case assigning 0 or 1 as value
• more general expectations: estimate the value of final state in the initial state
⇒ summation over final states
⇒ the value of the final state multiplied by the probability the program “will go there”
from the initial state

• naturally “will go there” depends on “from where”
Analyses of programs S lead to conclusions like

p ≡ wp.S.[P]

for some p and [P].

We can interpret them in two equivalent ways:
1. the expected value [P] of the final state is at least the value of p in the initial state; or

2. the probability that S will establish P is at least p.

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 26/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Interpretation of pGCL Expectations

• in full generality, an expectation is a function describing the value of a program state
• where [pred] is a special case assigning 0 or 1 as value
• more general expectations: estimate the value of final state in the initial state
⇒ summation over final states
⇒ the value of the final state multiplied by the probability the program “will go there”
from the initial state

• naturally “will go there” depends on “from where”
Analyses of programs S lead to conclusions like

p ≡ wp.S.[P]

for some p and [P]. We can interpret them in two equivalent ways:
1. the expected value [P] of the final state is at least the value of p in the initial state; or

2. the probability that S will establish P is at least p.

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 26/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Interpretation of pGCL Expectations

• in full generality, an expectation is a function describing the value of a program state
• where [pred] is a special case assigning 0 or 1 as value
• more general expectations: estimate the value of final state in the initial state
⇒ summation over final states
⇒ the value of the final state multiplied by the probability the program “will go there”
from the initial state

• naturally “will go there” depends on “from where”
Analyses of programs S lead to conclusions like

p ≡ wp.S.[P]

for some p and [P]. We can interpret them in two equivalent ways:
1. the expected value [P] of the final state is at least the value of p in the initial state; or
2. the probability that S will establish P is at least p.

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 26/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example

The probability that two fair coins, when flipped, show the same faces:

wp.

(
x := H 1

2
⊕ x := T ;

y := H 1
2
⊕ y := T

)
.[x = y]

≡ wp.(x := H 1
2
⊕ x := T).

([x = H]
2 + [x = T]

2

)
≡ 1

2

([H = H]
2 + [H = T]

2

)
+ 1

2

([T = H]
2 + [T = T]

2

)
≡ 1

2

(1
2 + 0

2

)
+ 1

2

(0
2 + 1

2

)
≡ 1

2

Apply second interpretation: the faces are the same with probability 1
2

How to interpret the expectations in

wp.(x := H 1
2
⊕ x := T).

([x = H]
2 + [x = T]

2

)
?

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 27/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example

The probability that two fair coins, when flipped, show the same faces:

wp.

(
x := H 1

2
⊕ x := T ;

y := H 1
2
⊕ y := T

)
.[x = y]

≡ wp.(x := H 1
2
⊕ x := T).

([x = H]
2 + [x = T]

2

)
≡ 1

2

([H = H]
2 + [H = T]

2

)
+ 1

2

([T = H]
2 + [T = T]

2

)
≡ 1

2

(1
2 + 0

2

)
+ 1

2

(0
2 + 1

2

)
≡ 1

2

Apply second interpretation: the faces are the same with probability 1
2

How to interpret the expectations in

wp.(x := H 1
2
⊕ x := T).

([x = H]
2 + [x = T]

2

)
?

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 27/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example

The probability that two fair coins, when flipped, show the same faces:

wp.

(
x := H 1

2
⊕ x := T ;

y := H 1
2
⊕ y := T

)
.[x = y]

≡ wp.(x := H 1
2
⊕ x := T).

([x = H]
2 + [x = T]

2

)

≡ 1
2

([H = H]
2 + [H = T]

2

)
+ 1

2

([T = H]
2 + [T = T]

2

)
≡ 1

2

(1
2 + 0

2

)
+ 1

2

(0
2 + 1

2

)
≡ 1

2

Apply second interpretation: the faces are the same with probability 1
2

How to interpret the expectations in

wp.(x := H 1
2
⊕ x := T).

([x = H]
2 + [x = T]

2

)
?

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 27/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example

The probability that two fair coins, when flipped, show the same faces:

wp.

(
x := H 1

2
⊕ x := T ;

y := H 1
2
⊕ y := T

)
.[x = y]

≡ wp.(x := H 1
2
⊕ x := T).

([x = H]
2 + [x = T]

2

)
≡ 1

2

([H = H]
2 + [H = T]

2

)
+ 1

2

([T = H]
2 + [T = T]

2

)

≡ 1
2

(1
2 + 0

2

)
+ 1

2

(0
2 + 1

2

)
≡ 1

2

Apply second interpretation: the faces are the same with probability 1
2

How to interpret the expectations in

wp.(x := H 1
2
⊕ x := T).

([x = H]
2 + [x = T]

2

)
?

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 27/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example

The probability that two fair coins, when flipped, show the same faces:

wp.

(
x := H 1

2
⊕ x := T ;

y := H 1
2
⊕ y := T

)
.[x = y]

≡ wp.(x := H 1
2
⊕ x := T).

([x = H]
2 + [x = T]

2

)
≡ 1

2

([H = H]
2 + [H = T]

2

)
+ 1

2

([T = H]
2 + [T = T]

2

)
≡ 1

2

(1
2 + 0

2

)
+ 1

2

(0
2 + 1

2

)

≡ 1
2

Apply second interpretation: the faces are the same with probability 1
2

How to interpret the expectations in

wp.(x := H 1
2
⊕ x := T).

([x = H]
2 + [x = T]

2

)
?

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 27/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example

The probability that two fair coins, when flipped, show the same faces:

wp.

(
x := H 1

2
⊕ x := T ;

y := H 1
2
⊕ y := T

)
.[x = y]

≡ wp.(x := H 1
2
⊕ x := T).

([x = H]
2 + [x = T]

2

)
≡ 1

2

([H = H]
2 + [H = T]

2

)
+ 1

2

([T = H]
2 + [T = T]

2

)
≡ 1

2

(1
2 + 0

2

)
+ 1

2

(0
2 + 1

2

)
≡ 1

2

Apply second interpretation: the faces are the same with probability 1
2

How to interpret the expectations in

wp.(x := H 1
2
⊕ x := T).

([x = H]
2 + [x = T]

2

)
?

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 27/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example

The probability that two fair coins, when flipped, show the same faces:

wp.

(
x := H 1

2
⊕ x := T ;

y := H 1
2
⊕ y := T

)
.[x = y]

≡ wp.(x := H 1
2
⊕ x := T).

([x = H]
2 + [x = T]

2

)
≡ 1

2

([H = H]
2 + [H = T]

2

)
+ 1

2

([T = H]
2 + [T = T]

2

)
≡ 1

2

(1
2 + 0

2

)
+ 1

2

(0
2 + 1

2

)
≡ 1

2

Apply second interpretation: the faces are the same with probability 1
2

How to interpret the expectations in

wp.(x := H 1
2
⊕ x := T).

([x = H]
2 + [x = T]

2

)
?

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 27/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example

The probability that two fair coins, when flipped, show the same faces:

wp.

(
x := H 1

2
⊕ x := T ;

y := H 1
2
⊕ y := T

)
.[x = y]

≡ wp.(x := H 1
2
⊕ x := T).

([x = H]
2 + [x = T]

2

)
≡ 1

2

([H = H]
2 + [H = T]

2

)
+ 1

2

([T = H]
2 + [T = T]

2

)
≡ 1

2

(1
2 + 0

2

)
+ 1

2

(0
2 + 1

2

)
≡ 1

2

Apply second interpretation: the faces are the same with probability 1
2

How to interpret the expectations in

wp.(x := H 1
2
⊕ x := T).

([x = H]
2 + [x = T]

2

)
?

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 27/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

How to interpret the expectations in

wp.(x := H 1
2
⊕ x := T).

([x = H]
2 + [x = T]

2

)
?

Interpretations:

1. the expected value [P] of the final state is at least the value of p in the initial state

⇒ the expected value of the expression [x=H]
2 + [x=T]

2 after executing the program
x := H 1

2
⊕ x := T

2.

For our overall reasoning we only need the second interpretation and the first one is only “glue”
that holds our reasoning together.

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 28/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

How to interpret the expectations in

wp.(x := H 1
2
⊕ x := T).

([x = H]
2 + [x = T]

2

)
?

Interpretations:

1. the expected value [P] of the final state is at least the value of p in the initial state

⇒ the expected value of the expression [x=H]
2 + [x=T]

2 after executing the program
x := H 1

2
⊕ x := T

2. the probability that S will establish P is at least p.
⇒ will establish [x=H]

2 + [x=T]
2

For our overall reasoning we only need the second interpretation and the first one is only “glue”
that holds our reasoning together.

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 28/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

How to interpret the expectations in

wp.(x := H 1
2
⊕ x := T).

([x = H]
2 + [x = T]

2

)
?

Interpretations:

1. the expected value [P] of the final state is at least the value of p in the initial state

⇒ the expected value of the expression [x=H]
2 + [x=T]

2 after executing the program
x := H 1

2
⊕ x := T

2. the probability that S will establish P is at least p.
⇒ will establish [x=H]

2 + [x=T]
2

For our overall reasoning we only need the second interpretation and the first one is only “glue”
that holds our reasoning together.

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 28/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

How to interpret the expectations in

wp.(x := H 1
2
⊕ x := T).

([x = H]
2 + [x = T]

2

)
?

Interpretations:
1. the expected value [P] of the final state is at least the value of p in the initial state

⇒ the expected value of the expression [x=H]
2 + [x=T]

2 after executing the program
x := H 1

2
⊕ x := T

2. the probability that S will establish P is at least p.
⇒ will establish [x=H]

2 + [x=T]
2

For our overall reasoning we only need the second interpretation and the first one is only “glue”
that holds our reasoning together.

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 28/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

How to interpret the expectations in

wp.(x := H 1
2
⊕ x := T).

([x = H]
2 + [x = T]

2

)
?

Interpretations:
1. the expected value [P] of the final state is at least the value of p in the initial state
⇒ the expected value of the expression [x=H]

2 + [x=T]
2 after executing the program

x := H 1
2
⊕ x := T

2. the probability that S will establish P is at least p.
⇒ will establish [x=H]

2 + [x=T]
2

For our overall reasoning we only need the second interpretation and the first one is only “glue”
that holds our reasoning together.

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 28/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

How to interpret the expectations in

wp.(x := H 1
2
⊕ x := T).

([x = H]
2 + [x = T]

2

)
?

Interpretations:
1. the expected value [P] of the final state is at least the value of p in the initial state
⇒ the expected value of the expression [x=H]

2 + [x=T]
2 after executing the program

x := H 1
2
⊕ x := T

2. the probability that S will establish P is at least p.
⇒ will establish [x=H]

2 + [x=T]
2

For our overall reasoning we only need the second interpretation and the first one is only “glue”
that holds our reasoning together.

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 28/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Properties of pGCL

All GCL commands satisfy conjunctivity:

wp.S.(P ∧ P ′) = wp.S.P ∧ wp.S.P ′

Do we need that also for pGCL?

We do not have conjunctivity in pGCL, but sub-linearity (it generalizes conjunctivity): Let a, b,
c be non-negative finite reals, and P , P ′ expectations, then all pGCL constructs satisfy

wp.S.(aP + bP ′ 	 c)W a(wp.S.P) + b(wp.S.P ′)	 c

where truncated subtraction 	 is defined as x	 y := (x− y) max 0

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 29/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Properties of pGCL

All GCL commands satisfy conjunctivity:

wp.S.(P ∧ P ′) = wp.S.P ∧ wp.S.P ′

Do we need that also for pGCL?

We do not have conjunctivity in pGCL, but sub-linearity (it generalizes conjunctivity): Let a, b,
c be non-negative finite reals, and P , P ′ expectations, then all pGCL constructs satisfy

wp.S.(aP + bP ′ 	 c)W a(wp.S.P) + b(wp.S.P ′)	 c

where truncated subtraction 	 is defined as x	 y := (x− y) max 0

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 29/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Properties of pGCL

All GCL commands satisfy conjunctivity:

wp.S.(P ∧ P ′) = wp.S.P ∧ wp.S.P ′

Do we need that also for pGCL?

We do not have conjunctivity in pGCL, but sub-linearity (it generalizes conjunctivity): Let a, b,
c be non-negative finite reals, and P , P ′ expectations, then all pGCL constructs satisfy

wp.S.(aP + bP ′ 	 c)W a(wp.S.P) + b(wp.S.P ′)	 c

where truncated subtraction 	 is defined as x	 y := (x− y) max 0

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 29/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Properties of pGCL

All GCL commands satisfy conjunctivity:

wp.S.(P ∧ P ′) = wp.S.P ∧ wp.S.P ′

Do we need that also for pGCL?

We do not have conjunctivity in pGCL, but sub-linearity (it generalizes conjunctivity): Let a, b,
c be non-negative finite reals, and P , P ′ expectations, then all pGCL constructs satisfy

wp.S.(aP + bP ′ 	 c)W a(wp.S.P) + b(wp.S.P ′)	 c

where truncated subtraction 	 is defined as x	 y := (x− y) max 0

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 29/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Monotonicity

Increasing a post-expectation can only increase the pre-expectation. Suppose P V P ′ for two
expectations P , P ′ then

wp.S.P V wp.S.P ′

Suppose P V P ′ for two expectations P, P ′:

wp.S.P ′

≡ wp.S.(P + (P ′ − P))
W wp.S.P + wp.S.(P ′ − P)
W wp.S.P

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 30/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Monotonicity

Increasing a post-expectation can only increase the pre-expectation. Suppose P V P ′ for two
expectations P , P ′ then

wp.S.P V wp.S.P ′

Suppose P V P ′ for two expectations P, P ′:

wp.S.P ′

≡ wp.S.(P + (P ′ − P))
W wp.S.P + wp.S.(P ′ − P)
W wp.S.P

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 30/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Monotonicity

Increasing a post-expectation can only increase the pre-expectation. Suppose P V P ′ for two
expectations P , P ′ then

wp.S.P V wp.S.P ′

Suppose P V P ′ for two expectations P, P ′:

wp.S.P ′

≡ wp.S.(P + (P ′ − P))
W wp.S.P + wp.S.(P ′ − P)
W wp.S.P

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 30/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Monotonicity

Increasing a post-expectation can only increase the pre-expectation. Suppose P V P ′ for two
expectations P , P ′ then

wp.S.P V wp.S.P ′

Suppose P V P ′ for two expectations P, P ′:

wp.S.P ′

≡ wp.S.(P + (P ′ − P))

W wp.S.P + wp.S.(P ′ − P)
W wp.S.P

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 30/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Monotonicity

Increasing a post-expectation can only increase the pre-expectation. Suppose P V P ′ for two
expectations P , P ′ then

wp.S.P V wp.S.P ′

Suppose P V P ′ for two expectations P, P ′:

wp.S.P ′

≡ wp.S.(P + (P ′ − P))
W wp.S.P + wp.S.(P ′ − P)

W wp.S.P

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 30/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Monotonicity

Increasing a post-expectation can only increase the pre-expectation. Suppose P V P ′ for two
expectations P , P ′ then

wp.S.P V wp.S.P ′

Suppose P V P ′ for two expectations P, P ′:

wp.S.P ′

≡ wp.S.(P + (P ′ − P))
W wp.S.P + wp.S.(P ′ − P)
W wp.S.P

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 30/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Feasibility

Pre-expectations cannot be “too large”.

wp.S.P V max P

Scaling

Multiplication by a non-negative constant distributes through commands.

Note we already
have one direction due to sub-linearity:

c ∗ wp.S.P wp.S.(c ∗ P)

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 31/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Feasibility

Pre-expectations cannot be “too large”.

wp.S.P V max P

Scaling

Multiplication by a non-negative constant distributes through commands. Note we already
have one direction due to sub-linearity:

c ∗ wp.S.P V wp.S.(c ∗ P)

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 31/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Feasibility

Pre-expectations cannot be “too large”.

wp.S.P V max P

Scaling

Multiplication by a non-negative constant distributes through commands.

Note we already
have one direction due to sub-linearity:

c ∗ wp.S.P ≡ wp.S.(c ∗ P)

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 31/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Probabilistic Conjunctivity?

• standard “∧” is not defined over numbers

• it should act analogue as “∧” due to embedded boolean
• obvious min and ∗ do not apply

We define & as:

exp & exp’ := exp + exp’	 1

0 & 0 = 0
0 & 1 = 0
1 & 0 = 0
1 & 1 = 1

Sub-Conjunctivity

As & sub-distributes through expectation transformers and from sub-linearity with
a, b, c := 1, 1, 1 we have:

wp.S.P & wp.S.P ′ V wp.S.(P & P ′)

for all S.

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 32/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Probabilistic Conjunctivity?

• standard “∧” is not defined over numbers
• it should act analogue as “∧” due to embedded boolean

• obvious min and ∗ do not apply
We define & as:

exp & exp’ := exp + exp’	 1

0 & 0 = 0
0 & 1 = 0
1 & 0 = 0
1 & 1 = 1

Sub-Conjunctivity

As & sub-distributes through expectation transformers and from sub-linearity with
a, b, c := 1, 1, 1 we have:

wp.S.P & wp.S.P ′ V wp.S.(P & P ′)

for all S.

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 32/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Probabilistic Conjunctivity?

• standard “∧” is not defined over numbers
• it should act analogue as “∧” due to embedded boolean

• obvious min and ∗ do not apply
We define & as:

exp & exp’ := exp + exp’	 1

0 & 0 = 0
0 & 1 = 0
1 & 0 = 0
1 & 1 = 1

Sub-Conjunctivity

As & sub-distributes through expectation transformers and from sub-linearity with
a, b, c := 1, 1, 1 we have:

wp.S.P & wp.S.P ′ V wp.S.(P & P ′)

for all S.

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 32/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Probabilistic Conjunctivity?

• standard “∧” is not defined over numbers
• it should act analogue as “∧” due to embedded boolean
• obvious min and ∗ do not apply

We define & as:

exp & exp’ := exp + exp’	 1

0 & 0 = 0
0 & 1 = 0
1 & 0 = 0
1 & 1 = 1

Sub-Conjunctivity

As & sub-distributes through expectation transformers and from sub-linearity with
a, b, c := 1, 1, 1 we have:

wp.S.P & wp.S.P ′ V wp.S.(P & P ′)

for all S.

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 32/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Probabilistic Conjunctivity?

• standard “∧” is not defined over numbers
• it should act analogue as “∧” due to embedded boolean
• obvious min and ∗ do not apply

We define & as:

exp & exp’ := exp + exp’	 1

0 & 0 = 0
0 & 1 = 0
1 & 0 = 0
1 & 1 = 1

Sub-Conjunctivity

As & sub-distributes through expectation transformers and from sub-linearity with
a, b, c := 1, 1, 1 we have:

wp.S.P & wp.S.P ′ V wp.S.(P & P ′)

for all S.

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 32/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Probabilistic Conjunctivity?

• standard “∧” is not defined over numbers
• it should act analogue as “∧” due to embedded boolean
• obvious min and ∗ do not apply

We define & as:

exp & exp’ := exp + exp’	 1

0 & 0 = 0
0 & 1 = 0
1 & 0 = 0
1 & 1 = 1

Sub-Conjunctivity

As & sub-distributes through expectation transformers and from sub-linearity with
a, b, c := 1, 1, 1 we have:

wp.S.P & wp.S.P ′ V wp.S.(P & P ′)

for all S.

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 32/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Overview

• Guarded Command Language (GCL)

• Probabilistic Guarded Command Language (pGCL)

• Abstraction and Refinement

• Probably Hoare? Hoare Probably!

• Abstraction Refinement and Proof for Probabilistic Systems

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 33/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Do we Have to Deal with Probability in weakest
pre-expectations/pre-conditions?

Short answer: Yes.

Why?

Probabilistic Hoare triples would allow easier reasoning:

p ` {pre} prog {post}

Hoare triple holds with at least probability p.

Fair & Unfair Coin

Consider the following programs fair & unfair:

fair x := A u (x := B 1
2
⊕ x := C)

unfair (x := A u x := B) 1
2
⊕ (x := A u x := C)

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 34/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Do we Have to Deal with Probability in weakest
pre-expectations/pre-conditions?

Short answer: Yes.

Why?

Probabilistic Hoare triples would allow easier reasoning:

p ` {pre} prog {post}

Hoare triple holds with at least probability p.

Fair & Unfair Coin

Consider the following programs fair & unfair:

fair x := A u (x := B 1
2
⊕ x := C)

unfair (x := A u x := B) 1
2
⊕ (x := A u x := C)

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 34/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Do we Have to Deal with Probability in weakest
pre-expectations/pre-conditions?

Short answer: Yes.

Why?

Probabilistic Hoare triples would allow easier reasoning:

p ` {pre} prog {post}

Hoare triple holds with at least probability p.

Fair & Unfair Coin

Consider the following programs fair & unfair:

fair x := A u (x := B 1
2
⊕ x := C)

unfair (x := A u x := B) 1
2
⊕ (x := A u x := C)

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 34/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Do we Have to Deal with Probability in weakest
pre-expectations/pre-conditions?

Short answer: Yes.

Why?

Probabilistic Hoare triples would allow easier reasoning:

p ` {pre} prog {post}

Hoare triple holds with at least probability p.

Fair & Unfair Coin

Consider the following programs fair & unfair:

fair x := A u (x := B 1
2
⊕ x := C)

unfair (x := A u x := B) 1
2
⊕ (x := A u x := C)

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 34/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Do we Have to Deal with Probability in weakest
pre-expectations/pre-conditions?

Short answer: Yes.

Why?

Probabilistic Hoare triples would allow easier reasoning:

p ` {pre} prog {post}

Hoare triple holds with at least probability p.

Fair & Unfair Coin

Consider the following programs fair & unfair:

fair x := A u (x := B 1
2
⊕ x := C)

unfair (x := A u x := B) 1
2
⊕ (x := A u x := C)

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 34/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Fair & Unfair Coin

Consider the following programs fair & unfair:

fair x := A u (x := B 1
2
⊕ x := C)

unfair (x := A u x := B) 1
2
⊕ (x := A u x := C)

The Programs Cannot Be Distinguished

all post-conditions fair probabilities unfair probabilities
false 0 = 0 = 0

x = A 1 min 0 = 0 = 1
2 (1 min 0) + 1

2 (1 min 0)
x = B 0 min 1

2 = 0 = 1
2 (0 min 1) + 1

2 (0 min 0)
x = C 0 min 1

2 = 0 = 1
2 (0 min 0) + 1

2 (0 min 1)
x 6= A 0 min 1 = 0 = 1

2 (0 min 1) + 1
2 (0 min 1)

x 6= B 1 min 1
2 = 1

2 = 1
2 (1 min 0) + 1

2 (1 min 1)
x 6= C 1 min 1

2 = 1
2 = 1

2 (1 min 1) + 1
2 (1 min 0)

true 1 = 1 = 1

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 35/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Fair & Unfair Coin

Consider the following programs fair & unfair:

fair x := A u (x := B 1
2
⊕ x := C)

unfair (x := A u x := B) 1
2
⊕ (x := A u x := C)

The Programs Cannot Be Distinguished

all post-conditions fair probabilities unfair probabilities
false 0 = 0 = 0

x = A 1 min 0 = 0 = 1
2 (1 min 0) + 1

2 (1 min 0)
x = B 0 min 1

2 = 0 = 1
2 (0 min 1) + 1

2 (0 min 0)
x = C 0 min 1

2 = 0 = 1
2 (0 min 0) + 1

2 (0 min 1)
x 6= A 0 min 1 = 0 = 1

2 (0 min 1) + 1
2 (0 min 1)

x 6= B 1 min 1
2 = 1

2 = 1
2 (1 min 0) + 1

2 (1 min 1)
x 6= C 1 min 1

2 = 1
2 = 1

2 (1 min 1) + 1
2 (1 min 0)

true 1 = 1 = 1

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 35/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hoare Probably!

Let preExp, postExp be real-valued expressions in the program variables:

{preExp} prog {postExp}

preExp evaluated in the initial state gives a lower bound for the expected value of expression
postExp.

It subsumes our earlier defined probably Hoare semantics:

{p× [pre]} prog {[post]}

From any initial state satisfying pre, prog will reach a final state satisfying post with
probability p.

postExp fair preExp unfair preExp

[x = A] + 2[x = B] 1 1
2

fair refines unfair

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 36/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hoare Probably!

Let preExp, postExp be real-valued expressions in the program variables:

{preExp} prog {postExp}

preExp evaluated in the initial state gives a lower bound for the expected value of expression
postExp. It subsumes our earlier defined probably Hoare semantics:

{p× [pre]} prog {[post]}

From any initial state satisfying pre, prog will reach a final state satisfying post with
probability p.

postExp fair preExp unfair preExp

[x = A] + 2[x = B] 1 1
2

fair refines unfair

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 36/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hoare Probably!

Let preExp, postExp be real-valued expressions in the program variables:

{preExp} prog {postExp}

preExp evaluated in the initial state gives a lower bound for the expected value of expression
postExp. It subsumes our earlier defined probably Hoare semantics:

{p× [pre]} prog {[post]}

From any initial state satisfying pre, prog will reach a final state satisfying post with
probability p.

postExp fair preExp unfair preExp

[x = A] + 2[x = B] 1 1
2

fair refines unfair

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 36/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Sub-Linearity

For any reals a, b, c ≥ 0 and expectations preExp, preExp′, postExp, postExp′, from

{preExp} S {postExp}
and {preExp′} S {postExp′}

follows

{a× preExp + b× preExp′ 	 c} S {a× postExp + b× postExp′ 	 c}

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 37/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Sub-Linearity

For any reals a, b, c ≥ 0 and expectations preExp, preExp′, postExp, postExp′, from

{preExp} S {postExp}
and {preExp′} S {postExp′}

follows

{a× preExp + b× preExp′ 	 c} S {a× postExp + b× postExp′ 	 c}

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 37/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Monte Carlo Algorithms

A probabilistic primality testing algorithm establishes a number’s prime, with arbitrary high
probability, by repeated failure to show that it is composite ⇒ example for iterated
Monte-Carlo algorithm

We want to decide a computationally expensive Boolean B (e.g. “a given number is prime”,
proof search). A Monte-Carlo algorithm for that is a computationally cheap and
guaranteed-to-terminate procedure which probably decides B (no Las-Vegas procedure).

Such a procedure for B could be specified as:

b := B ≥p⊕ (b := True u b := False)

where B is the desired result.

It is equal to:

b := B u
(
b := B p⊕ (b := True u b := False)

)

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 38/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Monte Carlo Algorithms

A probabilistic primality testing algorithm establishes a number’s prime, with arbitrary high
probability, by repeated failure to show that it is composite ⇒ example for iterated
Monte-Carlo algorithm

We want to decide a computationally expensive Boolean B (e.g. “a given number is prime”,
proof search). A Monte-Carlo algorithm for that is a computationally cheap and
guaranteed-to-terminate procedure which probably decides B (no Las-Vegas procedure).

Such a procedure for B could be specified as:

b := B ≥p⊕ (b := True u b := False)

where B is the desired result.

It is equal to:

b := B u
(
b := B p⊕ (b := True u b := False)

)

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 38/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Monte Carlo Algorithms

A probabilistic primality testing algorithm establishes a number’s prime, with arbitrary high
probability, by repeated failure to show that it is composite ⇒ example for iterated
Monte-Carlo algorithm

We want to decide a computationally expensive Boolean B (e.g. “a given number is prime”,
proof search). A Monte-Carlo algorithm for that is a computationally cheap and
guaranteed-to-terminate procedure which probably decides B (no Las-Vegas procedure).

Such a procedure for B could be specified as:

b := B ≥p⊕ (b := True u b := False)

where B is the desired result.

It is equal to:

b := B u
(
b := B p⊕ (b := True u b := False)

)

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 38/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Monte Carlo Algorithms

A probabilistic primality testing algorithm establishes a number’s prime, with arbitrary high
probability, by repeated failure to show that it is composite ⇒ example for iterated
Monte-Carlo algorithm

We want to decide a computationally expensive Boolean B (e.g. “a given number is prime”,
proof search). A Monte-Carlo algorithm for that is a computationally cheap and
guaranteed-to-terminate procedure which probably decides B (no Las-Vegas procedure).

Such a procedure for B could be specified as:

b := B ≥p⊕ (b := True u b := False)

where B is the desired result.
It is equal to:

b := B u
(
b := B p⊕ (b := True u b := False)

)
JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 38/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Probabilistic Primality

Instantiation with probabilistic primality:

if B then b := True else
b := False ≥ 1

2
⊕ b := True

fi

We would like to have [b = B] as post-expectation, meaning the program reveals in b the
value of unknown B. As pre-expectation we use 1CB B 1− 1

2N , so we seek for a program
Decide which such that

{

1CB B 1− 1
2N

} Decide {b = B}

Furthermore we need an invariant and choose:

Inv = [b]CB B 1− [b]
2n

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 39/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Probabilistic Primality

Instantiation with probabilistic primality:

if B then b := True else
b := False ≥ 1

2
⊕ b := True

fi

We would like to have [b = B] as post-expectation, meaning the program reveals in b the
value of unknown B.

As pre-expectation we use 1CB B 1− 1
2N , so we seek for a program

Decide which such that

{

1CB B 1− 1
2N

} Decide {b = B}

Furthermore we need an invariant and choose:

Inv = [b]CB B 1− [b]
2n

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 39/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Probabilistic Primality

Instantiation with probabilistic primality:

if B then b := True else
b := False ≥ 1

2
⊕ b := True

fi

We would like to have [b = B] as post-expectation, meaning the program reveals in b the
value of unknown B.

As pre-expectation we use 1CB B 1− 1
2N , so we seek for a program

Decide which such that

{

1CB B 1− 1
2N

} Decide {b = B}

Furthermore we need an invariant and choose:

Inv = [b]CB B 1− [b]
2n

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 39/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Probabilistic Primality

Instantiation with probabilistic primality:

if B then b := True else
b := False ≥ 1

2
⊕ b := True

fi

We would like to have [b = B] as post-expectation, meaning the program reveals in b the
value of unknown B. As pre-expectation we use 1CB B 1− 1

2N , so we seek for a program
Decide which such that

{1CB B 1− 1
2N
} Decide {b = B}

Furthermore we need an invariant and choose:

Inv = [b]CB B 1− [b]
2n

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 39/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Probabilistic Primality

Instantiation with probabilistic primality:

if B then b := True else
b := False ≥ 1

2
⊕ b := True

fi

We would like to have [b = B] as post-expectation, meaning the program reveals in b the
value of unknown B. As pre-expectation we use 1CB B 1− 1

2N , so we seek for a program
Decide which such that

{1CB B 1− 1
2N
} Decide {b = B}

Furthermore we need an invariant and choose:

Inv = [b]CB B 1− [b]
2n

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 39/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Probabilistic Primality cont’d

{1CB B 1− 1
2N
}

b, n := True, N ;
do n 6= 0 ∧ b→

CheckOnce;
n := n− 1

od

{b = B}

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 40/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Probabilistic Primality cont’d

{1CB B 1− 1
2N
}

b, n := True, N ;
do n 6= 0 ∧ b→

CheckOnce;
n := n− 1

od
{b = B}

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 40/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Probabilistic Primality cont’d

We carry out the checks for the invariant.

• Check that the invariant is established at initialization:

{1CB B 1− 1
2N
} b, n := True, N {Inv}

That is we want to check

1CB B 1− 1
2N
V Inv[b, n := True, N]

= 1CB B 1− 1
2N
V [True]CB B 1− [True]

2N

• Check for post-condition on termination:
When n = 0 or ¬b holds:

1CB B 1− 1
2N
V [b]CB B [¬b]

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 41/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Probabilistic Primality cont’d

We carry out the checks for the invariant.
• Check that the invariant is established at initialization:

{1CB B 1− 1
2N
} b, n := True, N {Inv}

That is we want to check

1CB B 1− 1
2N
V Inv[b, n := True, N]

= 1CB B 1− 1
2N
V [True]CB B 1− [True]

2N

• Check for post-condition on termination:
When n = 0 or ¬b holds:

1CB B 1− 1
2N
V [b]CB B [¬b]

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 41/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Probabilistic Primality cont’d

We carry out the checks for the invariant.
• Check that the invariant is established at initialization:

{1CB B 1− 1
2N
} b, n := True, N {Inv}

That is we want to check

1CB B 1− 1
2N
V Inv[b, n := True, N]

= 1CB B 1− 1
2N
V [True]CB B 1− [True]

2N

• Check for post-condition on termination:
When n = 0 or ¬b holds:

1CB B 1− 1
2N
V [b]CB B [¬b]

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 41/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Probabilistic Primality cont’d

We carry out the checks for the invariant.
• Check that the invariant is established at initialization:

{1CB B 1− 1
2N
} b, n := True, N {Inv}

That is we want to check

1CB B 1− 1
2N
V Inv[b, n := True, N]

= 1CB B 1− 1
2N
V [True]CB B 1− [True]

2N

• Check for post-condition on termination:
When n = 0 or ¬b holds:

1CB B 1− 1
2N
V [b]CB B [¬b]

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 41/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Probabilistic Primality cont’d

We carry out the checks for the invariant.
• Check that the invariant is established at initialization:

{1CB B 1− 1
2N
} b, n := True, N {Inv}

That is we want to check

1CB B 1− 1
2N
V Inv[b, n := True, N]

= 1CB B 1− 1
2N
V [True]CB B 1− [True]

2N

• Check for post-condition on termination:
When n = 0 or ¬b holds:

1CB B 1− 1
2N
V [b]CB B [¬b]

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 41/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Probabilistic Primality cont’d

• Loop body including decrement in invariant:

{1CB B 1− 1
2n
} CheckOnce {1CB B 1− 1

2n−1 }

and we assume the truth of the loop guard ⇒ n 6= 0 ∧ b.

+ When B holds CheckOnce should behave like skip and corresponds to the first part of our
instantiation:

if B then b := T rue else · · ·

+ When B does not hold, we use b := F alse, which makes both expectations 1.
⇒ Which is also part of our instantiation.

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 42/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Probabilistic Primality cont’d

• Loop body including decrement in invariant:

{1CB B 1− 1
2n
} CheckOnce {1CB B 1− 1

2n−1 }

and we assume the truth of the loop guard ⇒ n 6= 0 ∧ b.
+ When B holds CheckOnce should behave like skip and corresponds to the first part of our

instantiation:

if B then b := T rue else · · ·

+ When B does not hold, we use b := F alse, which makes both expectations 1.
⇒ Which is also part of our instantiation.

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 42/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Probabilistic Primality cont’d

• Loop body including decrement in invariant:

{1CB B 1− 1
2n
} CheckOnce {1CB B 1− 1

2n−1 }

and we assume the truth of the loop guard ⇒ n 6= 0 ∧ b.
+ When B holds CheckOnce should behave like skip and corresponds to the first part of our

instantiation:

if B then b := T rue else · · ·

+ When B does not hold, we use b := F alse, which makes both expectations 1.
⇒ Which is also part of our instantiation.

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 42/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Probabilistic Primality cont’d

The other part is
b := False 1

2
⊕ b := True

. For this we have an inference rule for probabilistic choice:

We just need to calculate the
pre-expectation:

1
21 + 1

2(1− 1
2n−1) = 1− 1

2n
= “note that b holds” 1− [b]

2n

Thus CheckOnce is implemented by our instantiation.

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 43/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Probabilistic Primality cont’d

The other part is
b := False 1

2
⊕ b := True

. For this we have an inference rule for probabilistic choice:

{preExp} S {postExp}
{preExp′} S′ {postExp}

{p× preExp + (1− p)× preExp′} S p⊕ S′ {postExp}

We just need to calculate the pre-expectation:

1
21 + 1

2(1− 1
2n−1) = 1− 1

2n
= “note that b holds” 1− [b]

2n

Thus CheckOnce is implemented by our instantiation.

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 43/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Probabilistic Primality cont’d

The other part is
b := False 1

2
⊕ b := True

. For this we have an inference rule for probabilistic choice:

{1} b := False {1− [b]
2n−1 }

{1− 1
2n−1 } b := True {1− [b]

2n−1 }

{1
21 + 1

2(1− 1
2n−1)} b := False 1

2
⊕ b := True {1− [b]

2n−1 }

We just need to calculate the pre-expectation:

1
21 + 1

2(1− 1
2n−1) = 1− 1

2n
= “note that b holds” 1− [b]

2n

Thus CheckOnce is implemented by our instantiation.

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 43/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Probabilistic Primality cont’d

The other part is
b := False 1

2
⊕ b := True

. For this we have an inference rule for probabilistic choice:

{1} b := False {1− [b]
2n−1 }

{1− 1
2n−1 } b := True {1− [b]

2n−1 }

{1
21 + 1

2(1− 1
2n−1)} b := False 1

2
⊕ b := True {1− [b]

2n−1 }

We just need to calculate the pre-expectation:

1
21 + 1

2(1− 1
2n−1) = 1− 1

2n
= “note that b holds” 1− [b]

2n

Thus CheckOnce is implemented by our instantiation.

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 43/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Overview

• Guarded Command Language (GCL)

• Probabilistic Guarded Command Language (pGCL)

• Abstraction and Refinement

• Probably Hoare? Hoare Probably!

• Abstraction Refinement and Proof for Probabilistic Systems

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 44/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Abstraction Refinement and Proof for Probabilistic Systems

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 45/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Short Overview of the Book

• Part I: Probabilistic guarded commands: introduction + probabilistic loop invariants and
variants

• Part II: Semantic structures: this part develops in detail the mathematics on which the
probabilistic logic is built and with which it is justified (correctness).

• Part III: Advanced topics: this part concentrates on more exotic methods of specification
and design, in this case probabilistic temporal/modal logics.

• Part IV: Appendices, bibliography and indexes

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 46/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Short Overview of the Book

• Part I: Probabilistic guarded commands: introduction + probabilistic loop invariants and
variants

• Part II: Semantic structures: this part develops in detail the mathematics on which the
probabilistic logic is built and with which it is justified (correctness).

• Part III: Advanced topics: this part concentrates on more exotic methods of specification
and design, in this case probabilistic temporal/modal logics.

• Part IV: Appendices, bibliography and indexes

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 46/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Summary

• GCL ⇒ pGCL
• wp-semantics of pGCL
• healthiness properties of pGCL
• probably Hoare semantics vs. Hoare probably semantics

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 47/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Thank you for your attention!

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 48/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

References
E.W. Dijkstra.
Guarded Commands, Nondeterminacy and Formal Derivation of Programs.
Communications of the ACM, 1975.
C.C. Morgan and A.K. McIver.
pGCL: formal reasoning for random algorithms.
South African Computer Journal, 1999.

C.C. Morgan and A.K. McIver.
Probably Hoare? Hoare probably!
In Millennial Perspectives in Computer Science, Cornerstones of Computing, pages
271–282, 2000.
C.C. Morgan and A.K. McIver.
Abstraction, Refinement and Proof for Probabilistic Systems.
Springer, 2004.

JS (TCS@UIBK) Abstraction, Refinement and Proof in Probabilistic Systems 49/49

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

	Guarded Command Language (GCL)
	Probabilistic Guarded Command Language (pGCL)
	Abstraction and Refinement
	Probably Hoare? Hoare Probably!
	Abstraction Refinement and Proof for Probabilistic Systems

