
Expected Cost Analysis of Probabilistic Programs
Lunchtime Seminar

Martin Avanzini Georg Moser Michael Schaper Jonas Schöpf

February 03, 2022

https://uibk.ac.at

Probabilistic Programming

Probabilistic Programming is a programming paradigm where probabilistic models can be
specified and inference for these is done automatically. Languages in this class, e.g.,
incorporate random events as primitives or probabilistic branching.

Motivation

• model natural/physical processes ⇒ “real” coin flip
• expressivity to model unavoidable application specifics (i.e. fault tolerance)

• cryptography ⇒ primality tests
• robotics/machine learning algorithms
• improvement of algorithms, e.g., quicksort

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Motivation 2/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Probabilistic Programming

Probabilistic Programming is a programming paradigm where probabilistic models can be
specified and inference for these is done automatically. Languages in this class, e.g.,
incorporate random events as primitives or probabilistic branching.

Motivation

• model natural/physical processes ⇒ “real” coin flip
• expressivity to model unavoidable application specifics (i.e. fault tolerance)

• cryptography ⇒ primality tests
• robotics/machine learning algorithms
• improvement of algorithms, e.g., quicksort

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Motivation 2/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Probabilistic Programming

Probabilistic Programming is a programming paradigm where probabilistic models can be
specified and inference for these is done automatically. Languages in this class, e.g.,
incorporate random events as primitives or probabilistic branching.

Motivation

• model natural/physical processes ⇒ “real” coin flip
• expressivity to model unavoidable application specifics (i.e. fault tolerance)
• cryptography ⇒ primality tests
• robotics/machine learning algorithms

• improvement of algorithms, e.g., quicksort

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Motivation 2/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Probabilistic Programming

Probabilistic Programming is a programming paradigm where probabilistic models can be
specified and inference for these is done automatically. Languages in this class, e.g.,
incorporate random events as primitives or probabilistic branching.

Motivation

• model natural/physical processes ⇒ “real” coin flip
• expressivity to model unavoidable application specifics (i.e. fault tolerance)
• cryptography ⇒ primality tests
• robotics/machine learning algorithms
• improvement of algorithms, e.g., quicksort

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Motivation 2/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Motivation - Quicksort
• “standard” vs. randomized quicksort

• first vs. last vs. random vs. median pivot element
• worst case: O(n2) vs. O(n2) (BUT expected or average time complexity is O(n log n))

Example Quicksort

[10, 80, 30, 90, 40, 50, 70]

[80, 90]

[][80]

[10, 30, 40, 50]

[][10, 30, 40]

[][10, 30]

[][10]

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Motivation 3/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Motivation - Quicksort
• “standard” vs. randomized quicksort

• first vs. last vs. random vs. median pivot element
• worst case: O(n2) vs. O(n2) (BUT expected or average time complexity is O(n log n))

Example Quicksort

[10, 80, 30, 90, 40, 50, 70]

[80, 90]

[][80]

[10, 30, 40, 50]

[][10, 30, 40]

[][10, 30]

[][10]

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Motivation 3/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Motivation - Quicksort
• “standard” vs. randomized quicksort
• first vs. last vs. random vs. median pivot element

• worst case: O(n2) vs. O(n2) (BUT expected or average time complexity is O(n log n))

Example Quicksort

[10, 80, 30, 90, 40, 50, 70]

[80, 90]

[][80]

[10, 30, 40, 50]

[][10, 30, 40]

[][10, 30]

[][10]

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Motivation 3/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Motivation - Quicksort
• “standard” vs. randomized quicksort
• first vs. last vs. random vs. median pivot element
• worst case: O(n2) vs. O(n2) (BUT expected or average time complexity is O(n log n))

Example Quicksort

[10, 80, 30, 90, 40, 50, 70]

[80, 90]

[][80]

[10, 30, 40, 50]

[][10, 30, 40]

[][10, 30]

[][10]

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Motivation 3/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Overview

• Primer

• Syntax & Semantic

• Automation

• Constraint Solving

• Summary

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Overview 4/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Overview

• Primer

• Syntax & Semantic

• Automation

• Constraint Solving

• Summary

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Primer 5/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Static Resource Analysis

Static Analysis

symbolic bound
(2, log x, 3n2, . . .)

Unknown
A

Yes, No, Proof, . . .

often undecidable

• integral part of formal verification
• improving the quality of complex software
• medical software, aviation software, nuclear

software, . . .

• recurrence relations
• type systems
• term rewriting
• . . .

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Primer 6/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Static Resource Analysis

Static Analysis

symbolic bound
(2, log x, 3n2, . . .)

Unknown
A

Yes, No, Proof, . . .

often undecidable

• integral part of formal verification
• improving the quality of complex software
• medical software, aviation software, nuclear

software, . . .

• recurrence relations
• type systems
• term rewriting
• . . .

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Primer 6/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Static Resource Analysis

Static Analysis

symbolic bound
(2, log x, 3n2, . . .)

Unknown
A

Yes, No, Proof, . . .

often undecidable

• integral part of formal verification
• improving the quality of complex software
• medical software, aviation software, nuclear

software, . . .

• recurrence relations
• type systems
• term rewriting
• . . .

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Primer 6/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Static Resource Analysis

Static Analysis

symbolic bound
(2, log x, 3n2, . . .)

Unknown
A

Yes, No, Proof, . . .

often undecidable

• integral part of formal verification
• improving the quality of complex software
• medical software, aviation software, nuclear

software, . . .

• recurrence relations
• type systems
• term rewriting
• . . .

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Primer 6/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Static Resource Analysis

Static Analysis

symbolic bound
(2, log x, 3n2, . . .)

Unknown
A

Yes, No, Proof, . . .

often undecidable

• integral part of formal verification
• improving the quality of complex software
• medical software, aviation software, nuclear

software, . . .

• recurrence relations
• type systems
• term rewriting
• . . .

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Primer 6/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Non-/Deterministic vs. Probabilistic
Non-/Determi. Probabilistic

Dynamics

Semantics

JP K(�) = ○ JP K(�) = {# ⋆
1
2 ,○

1
6 ,5

1
12 , . . . }#

�c1

○c2

○ c3

○c4
○c5

○ ○

� c1

○ c2

○ c3 ○ c4

⋆ ○ 5 ○ c5

...

1
2

1
2

1
3 1

6

3
6

• assign cost ci to each operation
• overall cost is the sum of all operation costs
• deal with probabilities

• focus on average case complexity
• program terminates with probability

1 (in a finite amount of time)

worst-case bounds
are not interesting

no standard termination
⇒ (positive) almost-sure
terminationmultisets

⇒ same outputs can occur
with different probabilities

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Primer 7/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Non-/Deterministic vs. Probabilistic
Non-/Determi. Probabilistic

Dynamics

Semantics

JP K(�) = ○ JP K(�) = {# ⋆
1
2 ,○

1
6 ,5

1
12 , . . . }#

�c1

○c2

○ c3

○c4
○c5

○ ○

� c1

○ c2

○ c3 ○ c4

⋆ ○ 5 ○ c5

...

1
2

1
2

1
3 1

6

3
6

• assign cost ci to each operation
• overall cost is the sum of all operation costs
• deal with probabilities

• focus on average case complexity
• program terminates with probability

1 (in a finite amount of time)

worst-case bounds
are not interesting

no standard termination
⇒ (positive) almost-sure
terminationmultisets

⇒ same outputs can occur
with different probabilities

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Primer 7/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Non-/Deterministic vs. Probabilistic
Non-/Determi. Probabilistic

Dynamics

Semantics

JP K(�) = ○ JP K(�) = {# ⋆
1
2 ,○

1
6 ,5

1
12 , . . . }#

�c1

○c2

○ c3

○c4
○c5

○ ○

� c1

○ c2

○ c3 ○ c4

⋆ ○ 5 ○ c5

...

1
2

1
2

1
3 1

6

3
6

• assign cost ci to each operation
• overall cost is the sum of all operation costs

• deal with probabilities

• focus on average case complexity
• program terminates with probability

1 (in a finite amount of time)

worst-case bounds
are not interesting

no standard termination
⇒ (positive) almost-sure
terminationmultisets

⇒ same outputs can occur
with different probabilities

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Primer 7/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Non-/Deterministic vs. Probabilistic
Non-/Determi. Probabilistic

Dynamics

Semantics

JP K(�) = ○ JP K(�) = {# ⋆
1
2 ,○

1
6 ,5

1
12 , . . . }#

�c1

○c2

○ c3

○c4
○c5

○ ○

� c1

○ c2

○ c3 ○ c4

⋆ ○ 5 ○ c5

...

1
2

1
2

1
3 1

6

3
6

• assign cost ci to each operation
• overall cost is the sum of all operation costs
• deal with probabilities

• focus on average case complexity
• program terminates with probability

1 (in a finite amount of time)

worst-case bounds
are not interesting

no standard termination
⇒ (positive) almost-sure
terminationmultisets

⇒ same outputs can occur
with different probabilities

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Primer 7/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Non-/Deterministic vs. Probabilistic
Non-/Determi. Probabilistic

Dynamics

Semantics

JP K(�) = ○ JP K(�) = {# ⋆
1
2 ,○

1
6 ,5

1
12 , . . . }#

�c1

○c2

○ c3

○c4
○c5

○ ○

� c1

○ c2

○ c3 ○ c4

⋆ ○ 5 ○ c5

...

1
2

1
2

1
3 1

6

3
6

• assign cost ci to each operation
• overall cost is the sum of all operation costs
• deal with probabilities

• focus on average case complexity

• program terminates with probability
1 (in a finite amount of time)

worst-case bounds
are not interesting

no standard termination
⇒ (positive) almost-sure
terminationmultisets

⇒ same outputs can occur
with different probabilities

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Primer 7/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Non-/Deterministic vs. Probabilistic
Non-/Determi. Probabilistic

Dynamics

Semantics

JP K(�) = ○ JP K(�) = {# ⋆
1
2 ,○

1
6 ,5

1
12 , . . . }#

�c1

○c2

○ c3

○c4
○c5

○ ○

� c1

○ c2

○ c3 ○ c4

⋆ ○ 5 ○ c5

...

1
2

1
2

1
3 1

6

3
6

• assign cost ci to each operation
• overall cost is the sum of all operation costs
• deal with probabilities

• focus on average case complexity
• program terminates with probability

1 (in a finite amount of time)

worst-case bounds
are not interesting

no standard termination
⇒ (positive) almost-sure
termination

multisets
⇒ same outputs can occur
with different probabilities

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Primer 7/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Non-/Deterministic vs. Probabilistic
Non-/Determi. Probabilistic

Dynamics

Semantics JP K(�) = ○

JP K(�) = {# ⋆
1
2 ,○

1
6 ,5

1
12 , . . . }#

�c1

○c2

○ c3

○c4
○c5

○ ○

� c1

○ c2

○ c3 ○ c4

⋆ ○ 5 ○ c5

...

1
2

1
2

1
3 1

6

3
6

• assign cost ci to each operation
• overall cost is the sum of all operation costs
• deal with probabilities

• focus on average case complexity
• program terminates with probability

1 (in a finite amount of time)

worst-case bounds
are not interesting

no standard termination
⇒ (positive) almost-sure
terminationmultisets

⇒ same outputs can occur
with different probabilities

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Primer 7/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Non-/Deterministic vs. Probabilistic
Non-/Determi. Probabilistic

Dynamics

Semantics JP K(�) = ○ JP K(�) = {# ⋆
1
2 ,○

1
6 ,5

1
12 , . . . }#

�c1

○c2

○ c3

○c4
○c5

○ ○

� c1

○ c2

○ c3 ○ c4

⋆ ○ 5 ○ c5

...

1
2

1
2

1
3 1

6

3
6

• assign cost ci to each operation
• overall cost is the sum of all operation costs
• deal with probabilities

• focus on average case complexity
• program terminates with probability

1 (in a finite amount of time)

worst-case bounds
are not interesting

no standard termination
⇒ (positive) almost-sure
terminationmultisets

⇒ same outputs can occur
with different probabilities

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Primer 7/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Non-/Deterministic vs. Probabilistic
Non-/Determi. Probabilistic

Dynamics

Semantics JP K(�) = ○ JP K(�) = {# ⋆
1
2 ,○

1
6 ,5

1
12 , . . . }#

�c1

○c2

○ c3

○c4
○c5

○ ○

� c1

○ c2

○ c3 ○ c4

⋆ ○ 5 ○ c5

...

1
2

1
2

1
3 1

6

3
6

• assign cost ci to each operation
• overall cost is the sum of all operation costs
• deal with probabilities

• focus on average case complexity
• program terminates with probability

1 (in a finite amount of time)

worst-case bounds
are not interesting

no standard termination
⇒ (positive) almost-sure
termination

multisets
⇒ same outputs can occur
with different probabilities

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Primer 7/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Overview

• Primer

• Syntax & Semantic

• Automation

• Constraint Solving

• Summary

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Syntax & Semantic 8/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

What Do We Want to Achieve?

We would like to have a calculus which to determine the expected runtime of a probabilistic
program or algorithm.

• compositional
• modular
• precise

Furthermore it would be beneficial if termination follows from this calculus.

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Syntax & Semantic 9/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Probabilistic While (pWhile)

• inspired by Dijkstra’s Guarded Command Language (GCL)

• simple (⇒ simplicity in reasoning helps)
• extended with probabilistic behavior

Syntax of pWhile

C, D ::=

x := d

| skip

| abort

| consume(e)

| C;D
| if(ϕ) {C} {D}
| while(ϕ) {C}

| {C} <> {D}

Example – geo

b := 1; x := 1;
while(b = 1) {

consume(1);
x := x ∗ 2;
b := ber(1, 1)}

ect[geo](0) =

1 + 1
2 · (1 + 1

2 · (1 + . . .

= 1 + 1
2 + 1

4 + 1
8 + . . . = 2

rand(e), unif(n, m), ber(n, m), . . .

prob(n, m) {C} {D}

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Syntax & Semantic 10/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Probabilistic While (pWhile)

• inspired by Dijkstra’s Guarded Command Language (GCL)
• simple (⇒ simplicity in reasoning helps)

• extended with probabilistic behavior

Syntax of pWhile

C, D ::=

x := d

| skip

| abort

| consume(e)

| C;D
| if(ϕ) {C} {D}
| while(ϕ) {C}

| {C} <> {D}

Example – geo

b := 1; x := 1;
while(b = 1) {

consume(1);
x := x ∗ 2;
b := ber(1, 1)}

ect[geo](0) =

1 + 1
2 · (1 + 1

2 · (1 + . . .

= 1 + 1
2 + 1

4 + 1
8 + . . . = 2

rand(e), unif(n, m), ber(n, m), . . .

prob(n, m) {C} {D}

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Syntax & Semantic 10/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Probabilistic While (pWhile)

• inspired by Dijkstra’s Guarded Command Language (GCL)
• simple (⇒ simplicity in reasoning helps)
• extended with probabilistic behavior

Syntax of pWhile

C, D ::=

x := d

| skip

| abort

| consume(e)

| C;D
| if(ϕ) {C} {D}
| while(ϕ) {C}

| {C} <> {D}

Example – geo

b := 1; x := 1;
while(b = 1) {

consume(1);
x := x ∗ 2;
b := ber(1, 1)}

ect[geo](0) =

1 + 1
2 · (1 + 1

2 · (1 + . . .

= 1 + 1
2 + 1

4 + 1
8 + . . . = 2

rand(e), unif(n, m), ber(n, m), . . .

prob(n, m) {C} {D}

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Syntax & Semantic 10/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Probabilistic While (pWhile)

• inspired by Dijkstra’s Guarded Command Language (GCL)
• simple (⇒ simplicity in reasoning helps)
• extended with probabilistic behavior

Syntax of pWhile

C, D ::=

x := d

| skip

| abort

| consume(e)

| C;D
| if(ϕ) {C} {D}
| while(ϕ) {C}

| {C} <> {D}

Example – geo

b := 1; x := 1;
while(b = 1) {

consume(1);
x := x ∗ 2;
b := ber(1, 1)}

ect[geo](0) =

1 + 1
2 · (1 + 1

2 · (1 + . . .

= 1 + 1
2 + 1

4 + 1
8 + . . . = 2

rand(e), unif(n, m), ber(n, m), . . .

prob(n, m) {C} {D}

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Syntax & Semantic 10/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Probabilistic While (pWhile)

• inspired by Dijkstra’s Guarded Command Language (GCL)
• simple (⇒ simplicity in reasoning helps)
• extended with probabilistic behavior

Syntax of pWhile

C, D ::= x := d

| skip

| abort

| consume(e)

| C;D
| if(ϕ) {C} {D}
| while(ϕ) {C}

| {C} <> {D}

Example – geo

b := 1; x := 1;
while(b = 1) {

consume(1);
x := x ∗ 2;
b := ber(1, 1)}

ect[geo](0) =

1 + 1
2 · (1 + 1

2 · (1 + . . .

= 1 + 1
2 + 1

4 + 1
8 + . . . = 2

rand(e), unif(n, m), ber(n, m), . . .

prob(n, m) {C} {D}

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Syntax & Semantic 10/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Probabilistic While (pWhile)

• inspired by Dijkstra’s Guarded Command Language (GCL)
• simple (⇒ simplicity in reasoning helps)
• extended with probabilistic behavior

Syntax of pWhile

C, D ::= x := d

| skip

| abort

| consume(e)

| C;D
| if(ϕ) {C} {D}
| while(ϕ) {C}
| {C} <> {D}

Example – geo

b := 1; x := 1;
while(b = 1) {

consume(1);
x := x ∗ 2;
b := ber(1, 1)}

ect[geo](0) =

1 + 1
2 · (1 + 1

2 · (1 + . . .

= 1 + 1
2 + 1

4 + 1
8 + . . . = 2

rand(e), unif(n, m), ber(n, m), . . .

prob(n, m) {C} {D}

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Syntax & Semantic 10/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Probabilistic While (pWhile)

• inspired by Dijkstra’s Guarded Command Language (GCL)
• simple (⇒ simplicity in reasoning helps)
• extended with probabilistic behavior

Syntax of pWhile

C, D ::= x := d

| skip

| abort

| consume(e)
| C;D
| if(ϕ) {C} {D}
| while(ϕ) {C}
| {C} <> {D}

Example – geo

b := 1; x := 1;
while(b = 1) {

consume(1);
x := x ∗ 2;
b := ber(1, 1)}

ect[geo](0) =

1 + 1
2 · (1 + 1

2 · (1 + . . .

= 1 + 1
2 + 1

4 + 1
8 + . . . = 2

rand(e), unif(n, m), ber(n, m), . . .

prob(n, m) {C} {D}

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Syntax & Semantic 10/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Probabilistic While (pWhile)

• inspired by Dijkstra’s Guarded Command Language (GCL)
• simple (⇒ simplicity in reasoning helps)
• extended with probabilistic behavior

Syntax of pWhile

C, D ::= x := d

| skip

| abort

| consume(e)
| C;D
| if(ϕ) {C} {D}
| while(ϕ) {C}
| {C} <> {D}

Example – geo

b := 1; x := 1;
while(b = 1) {

consume(1);
x := x ∗ 2;
b := ber(1, 1)}

ect[geo](0) =

1 + 1
2 · (1 + 1

2 · (1 + . . .

= 1 + 1
2 + 1

4 + 1
8 + . . . = 2

rand(e), unif(n, m), ber(n, m), . . .

prob(n, m) {C} {D}

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Syntax & Semantic 10/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Probabilistic While (pWhile)

• inspired by Dijkstra’s Guarded Command Language (GCL)
• simple (⇒ simplicity in reasoning helps)
• extended with probabilistic behavior

Syntax of pWhile

C, D ::= x := d

| skip

| abort

| consume(e)
| C;D
| if(ϕ) {C} {D}
| while(ϕ) {C}
| {C} <> {D}

Example – geo

b := 1; x := 1;
while(b = 1) {

consume(1);
x := x ∗ 2;
b := ber(1, 1)}

ect[geo](0) =

1 + 1
2 · (1 + 1

2 · (1 + . . .

= 1 + 1
2 + 1

4 + 1
8 + . . . = 2

rand(e), unif(n, m), ber(n, m), . . .

prob(n, m) {C} {D}

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Syntax & Semantic 10/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Probabilistic While (pWhile)

• inspired by Dijkstra’s Guarded Command Language (GCL)
• simple (⇒ simplicity in reasoning helps)
• extended with probabilistic behavior

Syntax of pWhile

C, D ::= x := d

| skip

| abort

| consume(e)
| C;D
| if(ϕ) {C} {D}
| while(ϕ) {C}
| {C} <> {D}

Example – geo

b := 1; x := 1;
while(b = 1) {

consume(1);
x := x ∗ 2;
b := ber(1, 1)}

ect[geo](0) =

1 + 1
2 · (1 + 1

2 · (1 + . . .

= 1 + 1
2 + 1

4 + 1
8 + . . . = 2

rand(e), unif(n, m), ber(n, m), . . .

prob(n, m) {C} {D}

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Syntax & Semantic 10/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Probabilistic While (pWhile)

• inspired by Dijkstra’s Guarded Command Language (GCL)
• simple (⇒ simplicity in reasoning helps)
• extended with probabilistic behavior

Syntax of pWhile

C, D ::= x := d

| skip

| abort

| consume(e)
| C;D
| if(ϕ) {C} {D}
| while(ϕ) {C}
| {C} <> {D}

Example – geo

b := 1; x := 1;
while(b = 1) {

consume(1);
x := x ∗ 2;
b := ber(1, 1)}

ect[geo](0) =

1 + 1
2 · (1 + 1

2 · (1 + . . .

= 1 + 1
2 + 1

4 + 1
8 + . . . = 2

rand(e), unif(n, m), ber(n, m), . . .

prob(n, m) {C} {D}

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Syntax & Semantic 10/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Probabilistic While (pWhile)

• inspired by Dijkstra’s Guarded Command Language (GCL)
• simple (⇒ simplicity in reasoning helps)
• extended with probabilistic behavior

Syntax of pWhile

C, D ::= x := d

| skip

| abort

| consume(e)
| C;D
| if(ϕ) {C} {D}
| while(ϕ) {C}
| {C} <> {D}

Example – geo

b := 1; x := 1;
while(b = 1) {

consume(1);
x := x ∗ 2;
b := ber(1, 1)}

ect[geo](0) =

1 + 1
2 · (1 + 1

2 · (1 + . . .

= 1 + 1
2 + 1

4 + 1
8 + . . . = 2

rand(e), unif(n, m), ber(n, m), . . .

prob(n, m) {C} {D}

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Syntax & Semantic 10/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Probabilistic While (pWhile)

• inspired by Dijkstra’s Guarded Command Language (GCL)
• simple (⇒ simplicity in reasoning helps)
• extended with probabilistic behavior

Syntax of pWhile

C, D ::= x := d

| skip

| abort

| consume(e)
| C;D
| if(ϕ) {C} {D}
| while(ϕ) {C}
| {C} <> {D}

Example – geo

b := 1; x := 1;
while(b = 1) {

consume(1);
x := x ∗ 2;
b := ber(1, 1)}

ect[geo](0) = 1 + 1
2 · (1 + 1

2 · (1 + . . .

= 1 + 1
2 + 1

4 + 1
8 + . . . = 2

rand(e), unif(n, m), ber(n, m), . . .

prob(n, m) {C} {D}

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Syntax & Semantic 10/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Probabilistic While (pWhile)

• inspired by Dijkstra’s Guarded Command Language (GCL)
• simple (⇒ simplicity in reasoning helps)
• extended with probabilistic behavior

Syntax of pWhile

C, D ::= x := d

| skip

| abort

| consume(e)
| C;D
| if(ϕ) {C} {D}
| while(ϕ) {C}
| {C} <> {D}

Example – geo

b := 1; x := 1;
while(b = 1) {

consume(1);
x := x ∗ 2;
b := ber(1, 1)}

ect[geo](0) = 1 + 1
2 · (1 + 1

2 · (1 + . . .

= 1 + 1
2 + 1

4 + 1
8 + . . .

= 2

rand(e), unif(n, m), ber(n, m), . . .

prob(n, m) {C} {D}

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Syntax & Semantic 10/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Probabilistic While (pWhile)

• inspired by Dijkstra’s Guarded Command Language (GCL)
• simple (⇒ simplicity in reasoning helps)
• extended with probabilistic behavior

Syntax of pWhile

C, D ::= x := d

| skip

| abort

| consume(e)
| C;D
| if(ϕ) {C} {D}
| while(ϕ) {C}
| {C} <> {D}

Example – geo

b := 1; x := 1;
while(b = 1) {

consume(1);
x := x ∗ 2;
b := ber(1, 1)}

ect[geo](0) = 1 + 1
2 · (1 + 1

2 · (1 + . . .

= 1 + 1
2 + 1

4 + 1
8 + . . . = 2

rand(e), unif(n, m), ber(n, m), . . .

prob(n, m) {C} {D}

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Syntax & Semantic 10/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Experiments Stable Version ecoimp

Problem ecoimp Absynth Wang et al. 2019
linear
2drwalk 0.026 0.286 −−
bayesian network 0.002 0.127 −−
ber 0.001 0.014 6.684
C4B t13 0.005 0.025 8.527
non-linear
2drobot 1.760 −− 11.621
queueing-network 2.215 1.286 78.191
nest-4 0.554 −− −−
trader-10 0.025 3.638 10.460
trader-20 0.030 119.464 10.420
trader-100000 2.113 −− 20.332
coupons-n 0.195 −− −−

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Syntax & Semantic 11/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Expected Cost Transformer

We define the expected cost transformer (ECT) operating on cost functions over states. Thus
ect[C](f) can be seen as the cost of C w.r.t. a continuation cost f .

C ect[C](f) evalue[C](f)
consume(e) ⟨e⟩ + f f

skip f f
abort 0 0
x := d λσ.Ed(σ)(λv.f [x/v](σ)) λσ.Ed(σ)(λv.f [x/v](σ))
C;D ect[C](ect[D](f)) evalue[D](evalue[D](f))
if(ϕ) {C} {D} [ϕ] · ect[C](f) + [¬ϕ] · ect[D](f) [ϕ] · evalue[C](f) + [¬ϕ] · evalue[D](f)
{C} <> {D} max(ect[C](f), ect[D](f)) max(evalue[C](f) , evalue[D](f))
while(ϕ) {C} lfp(λF.[ϕ] · ect[C](F) + [¬ϕ] · f) lfp(λF.[ϕ] · evalue[C](F) + [¬ϕ] · f)

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Syntax & Semantic 12/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Overview

• Primer

• Syntax & Semantic

• Automation

• Constraint Solving

• Summary

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Automation 13/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

ecoimp

A

Parsing

ECost
Templates

EValueInfer

Solve

Internal

TimeoutUnknown Bound

Inference
isL

oop
els

e
CFG

SDP

Matlab

SCC
isFun

. . . isTailRec

notRec

u
isM

utR
ec

u
else

b := 1 ;
x := 1;
while(b = 1) {

consume(1) ;
x := x ∗ 2 ;
b := ber(1, 1) }

no special information

ecost[Cgeo] = 1

[1, 2−b, b]

evalue[Cgeo](bi) = [1, 3
2 , 1

2]

1 + κ(1, 3
2 , 1

2) ≤ κ(1, 2 − b, b)

2 ·b

2

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Automation 14/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

ecoimp

A Parsing

ECost
Templates

EValueInfer

Solve

Internal

TimeoutUnknown Bound

Inference
isL

oop
els

e
CFG

SDP

Matlab

SCC
isFun

. . . isTailRec

notRec

u
isM

utR
ec

u
else

b := 1 ;
x := 1;
while(b = 1) {

consume(1) ;
x := x ∗ 2 ;
b := ber(1, 1) }

no special information

ecost[Cgeo] = 1

[1, 2−b, b]

evalue[Cgeo](bi) = [1, 3
2 , 1

2]

1 + κ(1, 3
2 , 1

2) ≤ κ(1, 2 − b, b)

2 ·b

2

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Automation 14/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

ecoimp

A Parsing

ECost
Templates

EValueInfer

Solve

Internal

TimeoutUnknown Bound

Inference
isL

oop
els

e
CFG

SDP

Matlab

SCC
isFun

. . . isTailRec

notRec

u
isM

utR
ec

u
else

b := 1 ;
x := 1;
while(b = 1) {

consume(1) ;
x := x ∗ 2 ;
b := ber(1, 1) }

no special information

ecost[Cgeo] = 1

[1, 2−b, b]

evalue[Cgeo](bi) = [1, 3
2 , 1

2]

1 + κ(1, 3
2 , 1

2) ≤ κ(1, 2 − b, b)

2 ·b

2

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Automation 14/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

ecoimp

A Parsing

ECost
Templates

EValueInfer

Solve

Internal

TimeoutUnknown Bound

Inference

isL
oop

els
e

CFG

SDP

Matlab

SCC
isFun

. . . isTailRec

notRec

u
isM

utR
ec

u
else

b := 1 ;
x := 1;
while(b = 1) {

consume(1) ;
x := x ∗ 2 ;
b := ber(1, 1) }

no special information

ecost[Cgeo] = 1

[1, 2−b, b]

evalue[Cgeo](bi) = [1, 3
2 , 1

2]

1 + κ(1, 3
2 , 1

2) ≤ κ(1, 2 − b, b)

2 ·b

2

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Automation 14/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

ecoimp

A Parsing

ECost
Templates

EValueInfer

Solve

Internal

TimeoutUnknown Bound

Inference
isL

oop

els
e

CFG

SDP

Matlab

SCC
isFun

. . . isTailRec

notRec

u
isM

utR
ec

u
else

b := 1 ;
x := 1;
while(b = 1) {

consume(1) ;
x := x ∗ 2 ;
b := ber(1, 1) }

no special information

ecost[Cgeo] = 1

[1, 2−b, b]

evalue[Cgeo](bi) = [1, 3
2 , 1

2]

1 + κ(1, 3
2 , 1

2) ≤ κ(1, 2 − b, b)

2 ·b

2

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Automation 14/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

ecoimp

A Parsing

ECost
Templates

EValueInfer

Solve

Internal

TimeoutUnknown Bound

Inference
isL

oop

els
e

CFG

SDP

Matlab

SCC
isFun

. . . isTailRec

notRec

u
isM

utR
ec

u
else

b := 1 ;
x := 1;
while(b = 1) {

consume(1) ;
x := x ∗ 2 ;
b := ber(1, 1) }

no special information

ecost[Cgeo] = 1

[1, 2−b, b]

evalue[Cgeo](bi) = [1, 3
2 , 1

2]

1 + κ(1, 3
2 , 1

2) ≤ κ(1, 2 − b, b)

2 ·b

2

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Automation 14/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

ecoimp

A Parsing

ECost
Templates

EValueInfer

Solve

Internal

TimeoutUnknown Bound

Inference
isL

oop

els
e

CFG

SDP

Matlab

SCC
isFun

. . . isTailRec

notRec

u
isM

utR
ec

u
else

b := 1 ;
x := 1;
while(b = 1) {

consume(1) ;
x := x ∗ 2 ;
b := ber(1, 1) }

no special information

ecost[Cgeo] = 1

[1, 2−b, b]

evalue[Cgeo](bi) = [1, 3
2 , 1

2]

1 + κ(1, 3
2 , 1

2) ≤ κ(1, 2 − b, b)

2 ·b

2

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Automation 14/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

ecoimp

A Parsing

ECost
Templates

EValueInfer

Solve

Internal

TimeoutUnknown Bound

Inference
isL

oop
els

e

CFG

SDP

Matlab

SCC
isFun

. . . isTailRec

notRec

u
isM

utR
ec

u
else

b := 1 ;
x := 1;
while(b = 1) {

consume(1) ;
x := x ∗ 2 ;
b := ber(1, 1) }

no special information

ecost[Cgeo] = 1

[1, 2−b, b]

evalue[Cgeo](bi) = [1, 3
2 , 1

2]

1 + κ(1, 3
2 , 1

2) ≤ κ(1, 2 − b, b)

2 ·b

2

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Automation 14/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

ecoimp

A Parsing

ECost
Templates

EValueInfer

Solve

Internal

TimeoutUnknown Bound

Inference
isL

oop
els

e

CFG

SDP

Matlab

SCC
isFun

. . . isTailRec

notRec

u
isM

utR
ec

u
else

b := 1 ;
x := 1;
while(b = 1) {

consume(1) ;
x := x ∗ 2 ;
b := ber(1, 1) }

no special information

ecost[Cgeo] = 1

[1, 2−b, b]

evalue[Cgeo](bi) = [1, 3
2 , 1

2]

1 + κ(1, 3
2 , 1

2) ≤ κ(1, 2 − b, b)

2 ·b

2

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Automation 14/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

ecoimp

A Parsing

ECost
Templates

EValueInfer

Solve

Internal

TimeoutUnknown Bound

Inference
isL

oop
els

e

CFG

SDP

Matlab

SCC
isFun

. . . isTailRec

notRec

u
isM

utR
ec

u
else

b := 1 ;
x := 1;
while(b = 1) {

consume(1) ;
x := x ∗ 2 ;
b := ber(1, 1) }

no special information

ecost[Cgeo] = 1

[1, 2−b, b]

evalue[Cgeo](bi) = [1, 3
2 , 1

2]

1 + κ(1, 3
2 , 1

2) ≤ κ(1, 2 − b, b)

2 ·b

2

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Automation 14/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

ecoimp

A Parsing

ECost
Templates

EValueInfer

Solve

Internal

TimeoutUnknown Bound

Inference
isL

oop
els

e

CFG

SDP

Matlab

SCC
isFun

. . . isTailRec

notRec

u
isM

utR
ec

u
else

b := 1 ;
x := 1;
while(b = 1) {

consume(1) ;
x := x ∗ 2 ;
b := ber(1, 1) }

no special information

ecost[Cgeo] = 1

[1, 2−b, b]

evalue[Cgeo](bi) = [1, 3
2 , 1

2]

1 + κ(1, 3
2 , 1

2) ≤ κ(1, 2 − b, b)

2 ·b

2

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Automation 14/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

ecoimp

A Parsing

ECost
Templates

EValueInfer

Solve

Internal

TimeoutUnknown Bound

Inference
isL

oop
els

e

CFG

SDP

Matlab

SCC
isFun

. . . isTailRec

notRec

u
isM

utR
ec

u
else

b := 1 ;
x := 1;
while(b = 1) {

consume(1) ;
x := x ∗ 2 ;
b := ber(1, 1) }

no special information

ecost[Cgeo] = 1

[1, 2−b, b]

evalue[Cgeo](bi) = [1, 3
2 , 1

2]

1 + κ(1, 3
2 , 1

2) ≤ κ(1, 2 − b, b)

2 ·b

2

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Automation 14/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

ecoimp

A Parsing

ECost
Templates

EValueInfer

Solve

Internal

TimeoutUnknown Bound

Inference
isL

oop
els

e

CFG

SDP

Matlab

SCC
isFun

. . . isTailRec

notRec

u
isM

utR
ec

u
else

b := 1 ;
x := 1;
while(b = 1) {

consume(1) ;
x := x ∗ 2 ;
b := ber(1, 1) }

no special information

ecost[Cgeo] = 1

[1, 2−b, b]

evalue[Cgeo](bi) = [1, 3
2 , 1

2]

1 + κ(1, 3
2 , 1

2) ≤ κ(1, 2 − b, b)

2 ·b

2

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Automation 14/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

ecoimp

A Parsing

ECost
Templates

EValueInfer

Solve

Internal

TimeoutUnknown Bound

Inference
isL

oop
els

e

CFG

SDP

Matlab

SCC
isFun

. . . isTailRec

notRec

u
isM

utR
ec

u
else

b := 1 ;
x := 1;
while(b = 1) {

consume(1) ;
x := x ∗ 2 ;
b := ber(1, 1) }

no special information

ecost[Cgeo] = 1

[1, 2−b, b]

evalue[Cgeo](bi) = [1, 3
2 , 1

2]

1 + κ(1, 3
2 , 1

2) ≤ κ(1, 2 − b, b)

2 ·b

2

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Automation 14/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

ecoimp

A Parsing

ECost
Templates

EValueInfer

Solve

Internal

TimeoutUnknown Bound

Inference
isL

oop
els

e

CFG

SDP

Matlab

SCC
isFun

. . . isTailRec

notRec

u
isM

utR
ec

u
else

b := 1 ;
x := 1;
while(b = 1) {

consume(1) ;
x := x ∗ 2 ;
b := ber(1, 1) }

no special information

ecost[Cgeo] = 1

[1, 2−b, b]

evalue[Cgeo](bi) = [1, 3
2 , 1

2]

1 + κ(1, 3
2 , 1

2) ≤ κ(1, 2 − b, b)

2 ·b

2

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Automation 14/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

ecoimp

A Parsing

ECost
Templates

EValueInfer

Solve

Internal

TimeoutUnknown Bound

Inference
isL

oop
els

e

CFG

SDP

Matlab

SCC
isFun

. . . isTailRec

notRec

u
isM

utR
ec

u
else

b := 1 ;
x := 1;
while(b = 1) {

consume(1) ;
x := x ∗ 2 ;
b := ber(1, 1) }

no special information

ecost[Cgeo] = 1

[1, 2−b, b]

evalue[Cgeo](bi) = [1, 3
2 , 1

2]

1 + κ(1, 3
2 , 1

2) ≤ κ(1, 2 − b, b)

2 ·b

2

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Automation 14/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

ecoimp

A Parsing

ECost
Templates

EValueInfer

Solve

Internal

TimeoutUnknown Bound

Inference
isL

oop
els

e

CFG

SDP

Matlab

SCC
isFun

. . . isTailRec

notRec

u
isM

utR
ec

u
else

b := 1 ;
x := 1;
while(b = 1) {

consume(1) ;
x := x ∗ 2 ;
b := ber(1, 1) }

no special information

ecost[Cgeo] = 1

[1, 2−b, b]

evalue[Cgeo](bi) = [1, 3
2 , 1

2]

1 + κ(1, 3
2 , 1

2) ≤ κ(1, 2 − b, b)

2 ·b

2

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Automation 14/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

ecoimp

A Parsing

ECost
Templates

EValueInfer

Solve

Internal

TimeoutUnknown Bound

Inference
isL

oop
els

e

CFG

SDP

Matlab

SCC
isFun

. . . isTailRec

notRec

u
isM

utR
ec

u
else

b := 1 ;
x := 1;
while(b = 1) {

consume(1) ;
x := x ∗ 2 ;
b := ber(1, 1) }

no special information

ecost[Cgeo] = 1

[1, 2−b, b]

evalue[Cgeo](bi) = [1, 3
2 , 1

2]

1 + κ(1, 3
2 , 1

2) ≤ κ(1, 2 − b, b)

2 ·b

2

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Automation 14/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Recursion

We extend the syntax of pWhile to function definitions and a call statement to a function. A
program is now a sequence of functions.

F ::= def fun : {C} call fun

This is semantically interpreted as:
• the entry point to a program is the main function

• a function is analyzed based on the SCC analysis
• we extend our theory to handle recursive calls

def geo : {
consume(1);
b := ber(1, 1);
if(b = 1) {

x := x ∗ 2;
call geo

} {
skip

}}

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Automation 15/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Recursion

We extend the syntax of pWhile to function definitions and a call statement to a function. A
program is now a sequence of functions.

F ::= def fun : {C} call fun

This is semantically interpreted as:
• the entry point to a program is the main function

• a function is analyzed based on the SCC analysis
• we extend our theory to handle recursive calls

def geo : {
consume(1);
b := ber(1, 1);
if(b = 1) {

x := x ∗ 2;
call geo

} {
skip

}}

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Automation 15/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Recursion

We extend the syntax of pWhile to function definitions and a call statement to a function. A
program is now a sequence of functions.

F ::= def fun : {C} call fun

This is semantically interpreted as:
• the entry point to a program is the main function
• a function is analyzed based on the SCC analysis

• we extend our theory to handle recursive calls

def geo : {
consume(1);
b := ber(1, 1);
if(b = 1) {

x := x ∗ 2;
call geo

} {
skip

}}

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Automation 15/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Recursion

We extend the syntax of pWhile to function definitions and a call statement to a function. A
program is now a sequence of functions.

F ::= def fun : {C} call fun

This is semantically interpreted as:
• the entry point to a program is the main function
• a function is analyzed based on the SCC analysis
• we extend our theory to handle recursive calls

def geo : {
consume(1);
b := ber(1, 1);
if(b = 1) {

x := x ∗ 2;
call geo

} {
skip

}}

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Automation 15/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Recursion

We extend the syntax of pWhile to function definitions and a call statement to a function. A
program is now a sequence of functions.

F ::= def fun : {C} call fun

This is semantically interpreted as:
• the entry point to a program is the main function
• a function is analyzed based on the SCC analysis
• we extend our theory to handle recursive calls

def geo : {
consume(1);
b := ber(1, 1);
if(b = 1) {

x := x ∗ 2;
call geo

} {
skip

}}

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Automation 15/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

ecoimp

A Parsing

ECost
Templates

EValueInfer

Solve

Internal

TimeoutUnknown Bound

Inference
isL

oop
els

e

CFG

SDP

Matlab

SCC
isFun

. . . isTailRec

notRec

u
isM

utR
ec

u
else

b := 1 ;
x := 1;
while(b = 1) {

consume(1) ;
x := x ∗ 2 ;
b := ber(1, 1) }

no special information

ecost[Cgeo] = 1

[1, 2−b, b]

evalue[Cgeo](bi) = [1, 3
2 , 1

2]

1 + κ(1, 3
2 , 1

2) ≤ κ(1, 2 − b, b)

2 ·b

2

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Automation 16/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

ecoimp

A Parsing

ECost
Templates

EValueInfer

Solve

Internal

TimeoutUnknown Bound

Inference
isL

oop
els

e
CFG

SDP

Matlab

SCC
isFun

. . . isTailRec

notRec

u
isM

utR
ec

u
else

b := 1 ;
x := 1;
while(b = 1) {

consume(1) ;
x := x ∗ 2 ;
b := ber(1, 1) }

no special information

ecost[Cgeo] = 1

[1, 2−b, b]

evalue[Cgeo](bi) = [1, 3
2 , 1

2]

1 + κ(1, 3
2 , 1

2) ≤ κ(1, 2 − b, b)

2 ·b

2

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Automation 16/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

ecoimp

A Parsing

ECost
Templates

EValueInfer

Solve

Internal

TimeoutUnknown Bound

Inference
isL

oop
els

e
CFG

SDP

Matlab

SCC
isFun

. . . isTailRec

notRec

u
isM

utR
ec

u
else

b := 1 ;
x := 1;
while(b = 1) {

consume(1) ;
x := x ∗ 2 ;
b := ber(1, 1) }

no special information

ecost[Cgeo] = 1

[1, 2−b, b]

evalue[Cgeo](bi) = [1, 3
2 , 1

2]

1 + κ(1, 3
2 , 1

2) ≤ κ(1, 2 − b, b)

2 ·b

2

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Automation 16/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

ecoimp

A Parsing

ECost
Templates

EValueInfer

Solve

Internal

TimeoutUnknown Bound

Inference
isL

oop
els

e
CFG

SDP

Matlab

SCC
isFun

. . . isTailRec

notRec

u
isM

utR
ec

u
else

b := 1 ;
x := 1;
while(b = 1) {

consume(1) ;
x := x ∗ 2 ;
b := ber(1, 1) }

no special information

ecost[Cgeo] = 1

[1, 2−b, b]

evalue[Cgeo](bi) = [1, 3
2 , 1

2]

1 + κ(1, 3
2 , 1

2) ≤ κ(1, 2 − b, b)

2 ·b

2

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Automation 16/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

ecoimp

A Parsing

ECost
Templates

EValueInfer

Solve

Internal

TimeoutUnknown Bound

Inference
isL

oop
els

e
CFG

SDP

Matlab

SCC
isFun

. . . isTailRec

notRec

u
isM

utR
ec

u
else

b := 1 ;
x := 1;
while(b = 1) {

consume(1) ;
x := x ∗ 2 ;
b := ber(1, 1) }

no special information

ecost[Cgeo] = 1

[1, 2−b, b]

evalue[Cgeo](bi) = [1, 3
2 , 1

2]

1 + κ(1, 3
2 , 1

2) ≤ κ(1, 2 − b, b)

2 ·b

2

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Automation 16/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

ecoimp

A Parsing

ECost
Templates

EValueInfer

Solve

Internal

TimeoutUnknown Bound

Inference
isL

oop
els

e
CFG

SDP

Matlab

SCC
isFun

. . . isTailRec

notRec

u
isM

utR
ec

u
else

b := 1 ;
x := 1;
while(b = 1) {

consume(1) ;
x := x ∗ 2 ;
b := ber(1, 1) }

no special information

ecost[Cgeo] = 1

[1, 2−b, b]

evalue[Cgeo](bi) = [1, 3
2 , 1

2]

1 + κ(1, 3
2 , 1

2) ≤ κ(1, 2 − b, b)

2 ·b

2

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Automation 16/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

ecoimp

A Parsing

ECost
Templates

EValueInfer

Solve

Internal

TimeoutUnknown Bound

Inference
isL

oop
els

e
CFG

SDP

Matlab

SCC
isFun

. . . isTailRec

notRec

u
isM

utR
ec

u
else

b := 1 ;
x := 1;
while(b = 1) {

consume(1) ;
x := x ∗ 2 ;
b := ber(1, 1) }

no special information

ecost[Cgeo] = 1

[1, 2−b, b]

evalue[Cgeo](bi) = [1, 3
2 , 1

2]

1 + κ(1, 3
2 , 1

2) ≤ κ(1, 2 − b, b)

2 ·b

2

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Automation 16/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Program Abstraction

• no arrays or pointer structures

• model complexity of original algorithm
• correct resource consumption
• show correspondence between original and

abstracted program with coupling

Analysis

We would like to automatically derive an upper bound
for the quicksort algorithm, but our initial approach can’t
even handle quickselect.
Our Implementation fails to solve the resulting
constraints of the quickselect algorithm as equating
coefficients is to weak.

Quickselect

def qselect : {
lo := 0;
hi := N − 1;
while(lo < hi) {

consume(hi − lo);
p := unif(lo, hi) ;
if(p = pos) {

lo := hi

} {
if(p < pos) {

lo := p + 1
} {

hi := p − 1}}}}

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Automation 17/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Program Abstraction

• no arrays or pointer structures
• model complexity of original algorithm
• correct resource consumption

• show correspondence between original and
abstracted program with coupling

Analysis

We would like to automatically derive an upper bound
for the quicksort algorithm, but our initial approach can’t
even handle quickselect.
Our Implementation fails to solve the resulting
constraints of the quickselect algorithm as equating
coefficients is to weak.

Quickselect

def qselect : {
lo := 0;
hi := N − 1;
while(lo < hi) {

consume(hi − lo);
p := unif(lo, hi) ;
if(p = pos) {

lo := hi

} {
if(p < pos) {

lo := p + 1
} {

hi := p − 1}}}}

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Automation 17/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Program Abstraction

• no arrays or pointer structures
• model complexity of original algorithm
• correct resource consumption
• show correspondence between original and

abstracted program with coupling

Analysis

We would like to automatically derive an upper bound
for the quicksort algorithm, but our initial approach can’t
even handle quickselect.
Our Implementation fails to solve the resulting
constraints of the quickselect algorithm as equating
coefficients is to weak.

Quickselect

def qselect : {
lo := 0;
hi := N − 1;
while(lo < hi) {

consume(hi − lo);
p := unif(lo, hi) ;
if(p = pos) {

lo := hi

} {
if(p < pos) {

lo := p + 1
} {

hi := p − 1}}}}

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Automation 17/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Program Abstraction

• no arrays or pointer structures
• model complexity of original algorithm
• correct resource consumption
• show correspondence between original and

abstracted program with coupling

Analysis

We would like to automatically derive an upper bound
for the quicksort algorithm, but our initial approach can’t
even handle quickselect.
Our Implementation fails to solve the resulting
constraints of the quickselect algorithm as equating
coefficients is to weak.

Quickselect

def qselect : {
lo := 0;
hi := N − 1;
while(lo < hi) {

consume(hi − lo);
p := unif(lo, hi) ;
if(p = pos) {

lo := hi

} {
if(p < pos) {

lo := p + 1
} {

hi := p − 1}}}}

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Automation 17/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Program Abstraction

• no arrays or pointer structures
• model complexity of original algorithm
• correct resource consumption
• show correspondence between original and

abstracted program with coupling

Analysis

We would like to automatically derive an upper bound
for the quicksort algorithm, but our initial approach can’t
even handle quickselect.
Our Implementation fails to solve the resulting
constraints of the quickselect algorithm as equating
coefficients is to weak.

Quickselect

def qselect : {
lo := 0;
hi := N − 1;
while(lo < hi) {

consume(hi − lo);
p := unif(lo, hi) ;
if(p = pos) {

lo := hi

} {
if(p < pos) {

lo := p + 1
} {

hi := p − 1}}}}

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Automation 17/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Program Abstraction

• no arrays or pointer structures
• model complexity of original algorithm
• correct resource consumption
• show correspondence between original and

abstracted program with coupling

Analysis

We would like to automatically derive an upper bound
for the quicksort algorithm, but our initial approach can’t
even handle quickselect.
Our Implementation fails to solve the resulting
constraints of the quickselect algorithm as equating
coefficients is to weak.

Quickselect

def qselect : {
lo := 0;
hi := N − 1;
while(lo < hi) {

consume(hi − lo);
p := unif(lo, hi) ;
if(p = pos) {

lo := hi

} {
if(p < pos) {

lo := p + 1
} {

hi := p − 1}}}}

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Automation 17/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Constraint Solving

• reduce the problem of finding a bound to checking for polynomials l,r that l ≥ r

• this check is done by equating coefficients
• for quickselect this is to weak
• instead check l − r ≥ 0 (in general NP-hard) ⇒ show that this polynomial is a sum of

squares

Sum-of-Squares (SOS)

We can show positivity of a polynomial by showing that it is a sum of squares. Let p be a
polynomial, then p has an SOS decomposition if

p =
∑

i

f2
i

for polynomials fi.

NB: For a polynomial p the following holds

p has an SOS decomposition =⇒ p is positive

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Constraint Solving 18/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Constraint Solving

• reduce the problem of finding a bound to checking for polynomials l,r that l ≥ r

• this check is done by equating coefficients
• for quickselect this is to weak

• instead check l − r ≥ 0 (in general NP-hard) ⇒ show that this polynomial is a sum of
squares

Sum-of-Squares (SOS)

We can show positivity of a polynomial by showing that it is a sum of squares. Let p be a
polynomial, then p has an SOS decomposition if

p =
∑

i

f2
i

for polynomials fi.

NB: For a polynomial p the following holds

p has an SOS decomposition =⇒ p is positive

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Constraint Solving 18/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Constraint Solving

• reduce the problem of finding a bound to checking for polynomials l,r that l ≥ r

• this check is done by equating coefficients
• for quickselect this is to weak
• instead check l − r ≥ 0 (in general NP-hard) ⇒ show that this polynomial is a sum of

squares

Sum-of-Squares (SOS)

We can show positivity of a polynomial by showing that it is a sum of squares. Let p be a
polynomial, then p has an SOS decomposition if

p =
∑

i

f2
i

for polynomials fi.

NB: For a polynomial p the following holds

p has an SOS decomposition =⇒ p is positive

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Constraint Solving 18/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Constraint Solving

• reduce the problem of finding a bound to checking for polynomials l,r that l ≥ r

• this check is done by equating coefficients
• for quickselect this is to weak
• instead check l − r ≥ 0 (in general NP-hard) ⇒ show that this polynomial is a sum of

squares

Sum-of-Squares (SOS)

We can show positivity of a polynomial by showing that it is a sum of squares. Let p be a
polynomial, then p has an SOS decomposition if

p =
∑

i

f2
i

for polynomials fi.

NB: For a polynomial p the following holds

p has an SOS decomposition =⇒ p is positive

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Constraint Solving 18/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Constraint Solving

• reduce the problem of finding a bound to checking for polynomials l,r that l ≥ r

• this check is done by equating coefficients
• for quickselect this is to weak
• instead check l − r ≥ 0 (in general NP-hard) ⇒ show that this polynomial is a sum of

squares

Sum-of-Squares (SOS)

We can show positivity of a polynomial by showing that it is a sum of squares. Let p be a
polynomial, then p has an SOS decomposition if

p =
∑

i

f2
i

for polynomials fi.

NB: For a polynomial p the following holds

p has an SOS decomposition =⇒ p is positive

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Constraint Solving 18/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Automation using Semi-Definite Programming (SDP)

Such an SOS decomposition can be found using semi-definite programming. A polynomial p
has an SOS decomposition if

p = vT Qv

where matrix Q is positive semi-definite and v is a vector of possible monomials. The vector
v is chosen from the variables in p according to specific heuristics.
A matrix Q which is positive semi-definite can be found by SDP.

Context

We still do one of the most basic forms, we show that l − r is positive.

• analysis on a program with information about variables
• incorporate available information into constraint solving
• we maintain a context of positive polynomials in our implementation

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Constraint Solving 19/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Automation using Semi-Definite Programming (SDP)

Such an SOS decomposition can be found using semi-definite programming. A polynomial p
has an SOS decomposition if

p = vT Qv

where matrix Q is positive semi-definite and v is a vector of possible monomials. The vector
v is chosen from the variables in p according to specific heuristics.
A matrix Q which is positive semi-definite can be found by SDP.

Context

We still do one of the most basic forms, we show that l − r is positive.

• analysis on a program with information about variables
• incorporate available information into constraint solving
• we maintain a context of positive polynomials in our implementation

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Constraint Solving 19/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Automation using Semi-Definite Programming (SDP)

Such an SOS decomposition can be found using semi-definite programming. A polynomial p
has an SOS decomposition if

p = vT Qv

where matrix Q is positive semi-definite and v is a vector of possible monomials. The vector
v is chosen from the variables in p according to specific heuristics.
A matrix Q which is positive semi-definite can be found by SDP.

Context

We still do one of the most basic forms, we show that l − r is positive.

• analysis on a program with information about variables
• incorporate available information into constraint solving
• we maintain a context of positive polynomials in our implementation

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Constraint Solving 19/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Automation using Semi-Definite Programming (SDP)

Such an SOS decomposition can be found using semi-definite programming. A polynomial p
has an SOS decomposition if

p = vT Qv

where matrix Q is positive semi-definite and v is a vector of possible monomials. The vector
v is chosen from the variables in p according to specific heuristics.
A matrix Q which is positive semi-definite can be found by SDP.

Context

We still do one of the most basic forms, we show that l − r is positive.
• analysis on a program with information about variables

• incorporate available information into constraint solving
• we maintain a context of positive polynomials in our implementation

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Constraint Solving 19/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Automation using Semi-Definite Programming (SDP)

Such an SOS decomposition can be found using semi-definite programming. A polynomial p
has an SOS decomposition if

p = vT Qv

where matrix Q is positive semi-definite and v is a vector of possible monomials. The vector
v is chosen from the variables in p according to specific heuristics.
A matrix Q which is positive semi-definite can be found by SDP.

Context

We still do one of the most basic forms, we show that l − r is positive.
• analysis on a program with information about variables
• incorporate available information into constraint solving

• we maintain a context of positive polynomials in our implementation

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Constraint Solving 19/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Automation using Semi-Definite Programming (SDP)

Such an SOS decomposition can be found using semi-definite programming. A polynomial p
has an SOS decomposition if

p = vT Qv

where matrix Q is positive semi-definite and v is a vector of possible monomials. The vector
v is chosen from the variables in p according to specific heuristics.
A matrix Q which is positive semi-definite can be found by SDP.

Context

We still do one of the most basic forms, we show that l − r is positive.
• analysis on a program with information about variables
• incorporate available information into constraint solving
• we maintain a context of positive polynomials in our implementation

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Constraint Solving 19/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Experiments

Problem ecoimp ecoimp(v1.0) Absynth KoAT2 Amber
miner .1753 * .0482 ✓ .1274 ✓ 2.7567 ✓ ;

qselect 13.6977 ✓ .0200 Ü ; ; ;

qselect rec 14.8312 ✓ ; ; ; ;

coupons-10 .0754 ✓ .0662 ✓ 32.7563 * .3496 Ü .0465 ✓

coupons-N 13.4197 * .2900 ✓ ; .3769 Ü ;

pol05 25.2870 ✓ .0575 ✓ .3191 ✓ .9076 Ü ;

geo .0310 ✓ .0118 ✓ .0309 Ü .5874 ✓ .0461 ✓

nest-4 60.1884 Ü 1.2368 ✓ 60.0697 Ü 1.9257 Ü ;

rdbub 25.4311 ✓ .0569 ✓ .3551 ✓ .8865 Ü ;

complex past 56.3168 * .1106 Ü .8738 Ü 1.3813 Ü 5.1363 ✓

polynomial past 1 60.3788 Ü .1715 Ü .4316 Ü 1.1733 Ü 1.2191 ✓

Table: Here ✓, *, Ü or ; denote that a bound was found, an imprecise bound was found, no bound
was found or the problem is not applicable respectively.

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Constraint Solving 20/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Summary

• static program analysis for probabilistic programs

• ECT calculus for compositional/modular analysis
• automation in ecoimp
• partly extension to recursion
• SDP solving using Matlab

Current/Future Research

• finishing recursion
• standalone SDP solving using Csdp

• logarithmic bounds
• abstractions via coupling

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Summary 21/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Summary

• static program analysis for probabilistic programs
• ECT calculus for compositional/modular analysis

• automation in ecoimp
• partly extension to recursion
• SDP solving using Matlab

Current/Future Research

• finishing recursion
• standalone SDP solving using Csdp

• logarithmic bounds
• abstractions via coupling

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Summary 21/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Summary

• static program analysis for probabilistic programs
• ECT calculus for compositional/modular analysis
• automation in ecoimp

• partly extension to recursion
• SDP solving using Matlab

Current/Future Research

• finishing recursion
• standalone SDP solving using Csdp

• logarithmic bounds
• abstractions via coupling

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Summary 21/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Summary

• static program analysis for probabilistic programs
• ECT calculus for compositional/modular analysis
• automation in ecoimp
• partly extension to recursion
• SDP solving using Matlab

Current/Future Research

• finishing recursion
• standalone SDP solving using Csdp

• logarithmic bounds
• abstractions via coupling

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Summary 21/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Summary

• static program analysis for probabilistic programs
• ECT calculus for compositional/modular analysis
• automation in ecoimp
• partly extension to recursion
• SDP solving using Matlab

Current/Future Research

• finishing recursion
• standalone SDP solving using Csdp

• logarithmic bounds
• abstractions via coupling

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Summary 21/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Summary

• static program analysis for probabilistic programs
• ECT calculus for compositional/modular analysis
• automation in ecoimp
• partly extension to recursion
• SDP solving using Matlab

Current/Future Research

• finishing recursion
• standalone SDP solving using Csdp
• logarithmic bounds
• abstractions via coupling

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Summary 21/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

Thank you for your attention!

JS (TCS@UIBK) Expected Cost Analysis of Probabilistic Programs – Summary 22/22

https://tcs-informatik.uibk.ac.at/
http://www.uibk.ac.at/

	Motivation
	Overview
	Primer
	Syntax & Semantic
	Automation
	Constraint Solving
	Summary

